Your browser doesn't support javascript.
loading
Electrochemical aptasensor for 17ß-estradiol using disposable laser scribed graphene electrodes.
Chang, Zhu; Zhu, Bicheng; Liu, JinJin; Zhu, Xu; Xu, Maotian; Travas-Sejdic, Jadranka.
Afiliação
  • Chang Z; Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China.
  • Zhu B; Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
  • Liu J; Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China.
  • Zhu X; Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China.
  • Xu M; Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China.
  • Travas-Sejdic J; Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand. Electronic address: j.travas-s
Biosens Bioelectron ; 185: 113247, 2021 Aug 01.
Article em En | MEDLINE | ID: mdl-33962157
17ß-Estradiol (E2), the strongest of the three major physiological estrogens in females, is an important factor in the female reproductive system. The abnormal level of E2 causes health issues, such as weak bones, urinary tract infections and even depression. Here, we present a novel, sensitive and selective, electrochemical aptasensor for detection of 17ß-estradiol (E2). The E2 recognition aptamer was split into two fragments: the first fragment, functionalised with adamantane, is attached to poly(ß-cyclodextrin) (poly(ß-CD))-modified electrode surface through host-guest interactions between the adamantane and poly(ß-CD). The second fragment, labelled with gold nanoparticles, forms the stem-loop structure with the first fragment only in the presence of E2. That specific recognition process triggers the change in the electrochemical signal (a change in the peak current from reduction of AuNPs), recorded by means of differential pulse voltammetry (DPV). The feasibility of the sensing design was firstly investigated on the commercially available glass carbon electrodes (GCE), with achieved a linear detection range of 1.0 × 10-13 to 1.0 × 10-8 M and a limit of detection (LoD) 0.7 fM. The sensing methodology was then translated onto single-use, disposable, laser-scribed graphene electrodes (LSGE) on a plastic substrate. The dynamic sensing range of E2 on LSGE was found to be 1.0 × 10-13 to 1.0 × 10-9 M, with a LoD of 63.1 fM, comparable to these of GCE. The successful translation of the developed E2 aptasensor from GCE to low-cost, disposable LSGE highlights a potential of this sensing platform in commercial, portable sensing detection systems for E2 and similar targets of biological interest.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Aptâmeros de Nucleotídeos / Nanopartículas Metálicas / Grafite Idioma: En Revista: Biosens Bioelectron Assunto da revista: BIOTECNOLOGIA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Aptâmeros de Nucleotídeos / Nanopartículas Metálicas / Grafite Idioma: En Revista: Biosens Bioelectron Assunto da revista: BIOTECNOLOGIA Ano de publicação: 2021 Tipo de documento: Article