Genotype- and tissue-specific physiological and biochemical changes of two chickpea (Cicer arietinum) varieties following a rapid dehydration.
Physiol Plant
; 172(3): 1822-1834, 2021 Jul.
Article
em En
| MEDLINE
| ID: mdl-33963567
In nature, plants may suffer rapid dehydration (RD), which causes significant loss of the annual global chickpea production. Thus, ascertaining more knowledge concerning the RD-tolerance mechanisms in chickpea is crucial for developing high drought-tolerant varieties to assure sustainable chickpea production under sudden water deficit. Here, we focused on genotype-driven variation in leaf relative water content (RWC) and associated differences in RD-responsive physiological and biochemical attributes in roots and leaves of two chickpea varieties, FLIP00-21C and FLIP02-89C, subjected to well-watered and RD conditions. FLIP00-21C showed higher RD-tolerance than FLIP02-89C, evident by its higher leaf RWC during RD. Consistently, FLIP00-21C exhibited lower membrane injury due to lower hydrogen peroxide (H2 O2 ) accumulation than FLIP02-89C during RD, indicating reduced RD-induced oxidative damage. Under RD conditions, total phenolics in roots and flavonoids in roots and leaves increased more in FLIP02-89C compared to FLIP00-21C; however, the increased activities of superoxide dismutase and H2 O2 -scavenging enzymes were more properly coordinated in FLIP00-21C than in FLIP02-89C, which might contribute to more efficient antioxidant defense in FLIP00-21C than in FLIP02-89C. The higher leaf RWC of FLIP00-21C versus FLIP02-89C under RD might be associated with greater increases in the levels of the osmo-regulators proline and total free amino acids (TFAAs) in FLIP00-21C than in FLIP02-89C. Collectively, the higher RD-tolerance of FLIP00-21C is mainly associated with the maintenance of higher RWC, stronger antioxidant defense, and greater accumulation of proline and TFAAs. These traits could be useful for evaluating the drought-tolerance of chickpea varieties and further marker-assisted breeding approaches for improvement of chickpea productivity.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Cicer
Idioma:
En
Revista:
Physiol Plant
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Irã