Your browser doesn't support javascript.
loading
Adipose Triglyceride Lipase Loss Promotes a Metabolic Switch in A549 Non-Small Cell Lung Cancer Cell Spheroids.
Honeder, Sophie; Tomin, Tamara; Nebel, Laura; Gindlhuber, Jürgen; Fritz-Wallace, Katarina; Schinagl, Maximilian; Heininger, Christoph; Schittmayer, Matthias; Ghaffari-Tabrizi-Wizsy, Nassim; Birner-Gruenberger, Ruth.
Afiliação
  • Honeder S; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria.
  • Tomin T; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria.
  • Nebel L; Otto Loewi Research Center - Immunology and Pathophysiology, Medical University of Graz, Graz, Austria; QPS Austria GmbH, Grambach, Austria.
  • Gindlhuber J; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria.
  • Fritz-Wallace K; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dres
  • Schinagl M; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria.
  • Heininger C; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria.
  • Schittmayer M; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria.
  • Ghaffari-Tabrizi-Wizsy N; Otto Loewi Research Center - Immunology and Pathophysiology, Medical University of Graz, Graz, Austria. Electronic address: nassim.ghaffari@medunigraz.at.
  • Birner-Gruenberger R; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria; Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna, Austria. Electronic address: ruth.birne
Mol Cell Proteomics ; 20: 100095, 2021.
Article em En | MEDLINE | ID: mdl-33992777
ABSTRACT
Cancer cells undergo complex metabolic adaptations to survive and thrive in challenging environments. This is particularly prominent for solid tumors, where cells in the core of the tumor are under severe hypoxia and nutrient deprivation. However, such conditions are often not recapitulated in the typical 2D in vitro cancer models, where oxygen as well as nutrient exposure is quite uniform. The aim of this study was to investigate the role of a key neutral lipid hydrolase, namely adipose triglyceride lipase (ATGL), in cancer cells that are exposed to more tumor-like conditions. To that end, we cultured lung cancer cells lacking ATGL as multicellular spheroids in 3D and subjected them to comprehensive proteomics analysis and metabolic phenotyping. Proteomics data are available via ProteomeXchange with identifier PXD021105. As a result, we report that loss of ATGL enhanced growth of spheroids and facilitated their adaptation to hypoxia, by increasing the influx of glucose and endorsing a pro-Warburg effect. This was followed by changes in lipid metabolism and an increase in protein production. Interestingly, the observed phenotype was also recapitulated in an even more "in vivo like" setup, when cancer spheroids were grown on chick chorioallantoic membrane, but not when cells were cultured as a 2D monolayer. In addition, we demonstrate that according to the publicly available cancer databases, an inverse relation between ATGL expression and higher glucose dependence can be observed. In conclusion, we provide indications that ATGL is involved in regulation of glucose metabolism of cancer cells when grown in 3D (mimicking solid tumors) and as such could be an important factor of the treatment outcome for some cancer types. Finally, we also ratify the need for alternative cell culture models, as the majority of phenotypes observed in 3D and spheroids grown on chick chorioallantoic membrane were not observed in 2D cell culture.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Aciltransferases / Carcinoma Pulmonar de Células não Pequenas / Neoplasias Pulmonares Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Cell Proteomics Assunto da revista: BIOLOGIA MOLECULAR / BIOQUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Áustria

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Aciltransferases / Carcinoma Pulmonar de Células não Pequenas / Neoplasias Pulmonares Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Mol Cell Proteomics Assunto da revista: BIOLOGIA MOLECULAR / BIOQUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Áustria