Your browser doesn't support javascript.
loading
Causal relationship of CA3 back-projection to the dentate gyrus and its role in CA1 fast ripple generation.
Núñez-Ochoa, Miguel A; Chiprés-Tinajero, Gustavo A; González-Domínguez, Nadia P; Medina-Ceja, Laura.
Afiliação
  • Núñez-Ochoa MA; Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, CP 45110, Zapopan, Jalisco, Mexico.
  • Chiprés-Tinajero GA; Biomedical Sciences, CUCS, University of Guadalajara, Sierra Mojada 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico.
  • González-Domínguez NP; Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. R. Padilla Sánchez 2100, Las Agujas, Nextipac, CP 45110, Zapopan, Jalisco, Mexico.
  • Medina-Ceja L; Biomedical Sciences, CUCS, University of Guadalajara, Sierra Mojada 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico.
BMC Neurosci ; 22(1): 37, 2021 05 17.
Article em En | MEDLINE | ID: mdl-34001031
BACKGROUND: Pathophysiological evidence from temporal lobe epilepsy models highlights the hippocampus as the most affected structure due to its high degree of neuroplasticity and control of the dynamics of limbic structures, which are necessary to encode information, conferring to it an intrinsic epileptogenicity. A loss in this control results in observable oscillatory perturbations called fast ripples, in epileptic rats those events are found in CA1, CA3, and the dentate gyrus (DG), which are the principal regions of the trisynaptic circuit of the hippocampus. The present work used Granger causality to address which relationships among these three regions of the trisynaptic circuit are needed to cause fast ripples in CA1 in an in vivo model. For these purposes, male Wistar rats (210-300 g) were injected with a single dose of pilocarpine hydrochloride (2.4 mg/2 µl) into the right lateral ventricle and video-monitored 24 h/day to detect spontaneous and recurrent seizures. Once detected, rats were implanted with microelectrodes in these regions (fixed-recording tungsten wire electrodes, 60-µm outer diameter) ipsilateral to the pilocarpine injection. A total of 336 fast ripples were recorded and probabilistically characterized, from those fast ripples we made a subset of all the fast ripple events associated with sharp-waves in CA1 region (n = 40) to analyze them with Granger Causality. RESULTS: Our results support existing evidence in vitro in which fast ripple events in CA1 are initiated by CA3 multiunit activity and describe a general synchronization in the theta band across the three regions analyzed DG, CA3, and CA1, just before the fast ripple event in CA1 have begun. CONCLUSION: This in vivo study highlights the causal participation of the CA3 back-projection to the DG, a connection commonly overlooked in the trisynaptic circuit, as a facilitator of a closed-loop among these regions that prolongs the excitatory activity of CA3. We speculate that the loss of inhibitory drive of DG and the mechanisms of ripple-related memory consolidation in which also the CA3 back-projection to DG has a fundamental role might be underlying processes of the fast ripples generation in CA1.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Giro Denteado / Epilepsia do Lobo Temporal / Região CA1 Hipocampal / Região CA3 Hipocampal / Inibição Neural Limite: Animals Idioma: En Revista: BMC Neurosci Assunto da revista: NEUROLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: México

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Giro Denteado / Epilepsia do Lobo Temporal / Região CA1 Hipocampal / Região CA3 Hipocampal / Inibição Neural Limite: Animals Idioma: En Revista: BMC Neurosci Assunto da revista: NEUROLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: México