Your browser doesn't support javascript.
loading
Construction of Interlayer Conjugated Links in 2D Covalent Organic Frameworks via Topological Polymerization.
Zhu, Yuhao; Shao, Pengpeng; Hu, Linyu; Sun, Chao; Li, Jie; Feng, Xiao; Wang, Bo.
Afiliação
  • Zhu Y; Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Shao P; Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Hu L; Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Sun C; Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Li J; Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Feng X; Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
  • Wang B; Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
J Am Chem Soc ; 143(21): 7897-7902, 2021 Jun 02.
Article em En | MEDLINE | ID: mdl-34009971
ABSTRACT
Two-dimensional covalent organic frameworks (2D COFs) are well-defined polymeric sheets that usually stack in an eclipsed mode via van der Waals forces. Extensive efforts have been made to manipulate interlayer interactions, yet there still lack a way to construct conjugated connections between adjacent layers, which is important for (opto)electronic-related applications. Herein, we report an interlayer topological polymerization strategy to transform the well-organized diacetylene columnar arrays in three different 2D COFs (TAPFY-COF, TAPB-COF, and TAPP-COF) into conjugated enyne chains upon heating in the solid state. The resultant COFs (COF-P) with retained high crystallinity possess broadened absorption bands and narrowed band gaps. The newly formed conjugated chains provide extra charge carrier pathways through direct π-electron delocalization. As a proof-of-concept, after topological polymerization, the conductivity of the TAPFY-COF film achieves 2.8 × 10-4 S/cm without doping, and the photothermal, photoacoustic, and oxygen reduction catalytic performance of TAPP-COF is significantly improved.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2021 Tipo de documento: Article