Your browser doesn't support javascript.
loading
Increased chemosensitivity via BRCA2-independent DNA damage in DSS1- and PCID2-depleted breast carcinomas.
Gondo, Naomi; Sakai, Yasuhiro; Zhang, Zhenhuan; Hato, Yukari; Kuzushima, Kiyotaka; Phimsen, Suchada; Kawashima, Yoshiaki; Kuroda, Makoto; Suzuki, Motoshi; Okada, Seiji; Iwata, Hiroji; Toyama, Tatsuya; Rezano, Andri; Kuwahara, Kazuhiko.
Afiliação
  • Gondo N; Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan.
  • Sakai Y; Division of Cellular Oncology, Department of Cancer Genetics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
  • Zhang Z; Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan.
  • Hato Y; Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Japan.
  • Kuzushima K; Radiation Oncology Department, University of Florida, Gainesville, FL, USA.
  • Phimsen S; Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
  • Kawashima Y; Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan.
  • Kuroda M; Division of Cellular Oncology, Department of Cancer Genetics, Nagoya University Graduate School of Medicine, Nagoya, Japan.
  • Suzuki M; Faculty of Medical Science, Department of Biochemistry, Naresuan University, Phitsanulok, Thailand.
  • Okada S; Department of Pathology, Fujita Health University Hospital, Toyoake, Japan.
  • Iwata H; Department of Pathology, Fujita Health University Okazaki Medical Center, Okazaki, Japan.
  • Toyama T; Department of Molecular Oncology, Fujita Health University School of Medicine, Toyoake, Japan.
  • Rezano A; Division of Hematopoiesis, Joint Research Center for Retroviral Infection, Kumamoto University, Kumamoto, Japan.
  • Kuwahara K; Department of Breast Oncology, Aichi Cancer Center Hospital, Nagoya, Japan.
Lab Invest ; 101(8): 1048-1059, 2021 08.
Article em En | MEDLINE | ID: mdl-34031538
ABSTRACT
Breast cancer, the most common malignancy among women, is closely associated with mutations in the tumor suppressor gene BRCA. DSS1, a component of the TRanscription-EXport-2 (TREX-2) complex involved in transcription and mRNA nuclear export, stabilizes BRCA2 expression. DSS1 is also related to poor prognosis in patients with breast cancer owing to the induction of chemoresistance. Recently, BRCA2 was shown to be associated with the TREX-2 component PCID2, which prevents DNARNA hybrid R-loop formation and transcription-coupled DNA damage. This study aimed to elucidate the involvement of these TREX-2 components and BRCA2 in the chemosensitivity of breast carcinomas. Our results showed that compared with that in normal breast tissues, DSS1 expression was upregulated in human breast carcinoma, whereas PCID2 expression was comparable between normal and malignant tissues. We then compared patient survival time among groups divided by high or low expressions of DSS1, BRCA2, and PCID2. Increased DSS1 expression was significantly correlated with poor prognosis in recurrence-free survival time, whereas no differences were detected in the high and low BRCA2 and PCID2 expression groups. We performed in vitro analyses, including propidium iodide nuclear staining, single-cell gel electrophoresis, and clonogenic survival assays, using breast carcinoma cell lines. The results confirmed that DSS1 depletion significantly increased chemosensitivity, whereas overexpression conferred chemoresistance to breast cancer cell lines; however, BRCA2 expression did not affect chemosensitivity. Similar to DSS1, PCID2 expression was also inversely correlated with chemosensitivity. These results strongly suggest that DSS1 and PCID2 depletion is closely associated with increased chemosensitivity via BRCA2-independent DNA damage. Together with the finding that DSS1 is not highly expressed in normal breast tissues, these results demonstrate that DSS1 depletion confers a druggable trait and may contribute to the development of novel chemotherapeutic strategies to treat DSS1-depleted breast carcinomas independent of BRCA2 mutations.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dano ao DNA / Neoplasias da Mama / Resistencia a Medicamentos Antineoplásicos / Proteína BRCA2 Tipo de estudo: Prognostic_studies Limite: Female / Humans Idioma: En Revista: Lab Invest Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dano ao DNA / Neoplasias da Mama / Resistencia a Medicamentos Antineoplásicos / Proteína BRCA2 Tipo de estudo: Prognostic_studies Limite: Female / Humans Idioma: En Revista: Lab Invest Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão