Your browser doesn't support javascript.
loading
The E2F1/USP11 positive feedback loop promotes hepatocellular carcinoma metastasis and inhibits autophagy by activating ERK/mTOR pathway.
Qiao, Lijun; Zhang, Qiangnu; Sun, Zhe; Liu, Quan; Wu, Zongze; Hu, Weibin; Bao, Shiyun; Yang, Qinhe; Liu, Liping.
Afiliação
  • Qiao L; Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China.
  • Zhang Q; Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China.
  • Sun Z; Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, Guangdong, China.
  • Liu Q; Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Sh
  • Wu Z; Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Sh
  • Hu W; Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Sh
  • Bao S; Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Sh
  • Yang Q; School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, China. Electronic address: tyangqh@jnu.edu.cn.
  • Liu L; Department of Hepatobiliary and Pancreas Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China; Department of Hepatobiliary and Pancreas Surgery, The First Affiliated Hospital, Southern University of Science and Technology, Sh
Cancer Lett ; 514: 63-78, 2021 08 28.
Article em En | MEDLINE | ID: mdl-34044068
ABSTRACT
Deubiquitinase ubiquitin-specific protease 11 (USP11), a member of the deubiquitinating family, plays an important but still controversial role in cancer development. Namely, USP11 has been shown to promote the proliferation and metastasis of hepatocellular carcinoma (HCC), but the underlying molecular basis is poorly understood. This study aimed to unravel novel functions of USP11 in HCC, especially those related to autophagy. Here, EdU, migration and colony formation assays, and mouse models showed that USP11 played a crucial role in HCC cell proliferation and metastasis in vitro and in vivo. Results from co-immunoprecipitation and ubiquitination assays demonstrated that USP11 interacted with E2F1 and maintained E2F1 protein stability by removing its ubiquitin. Notably, E2F1 regulated USP11 expression at the transcriptional level. Thus, the E2F1/USP11 formed a positive feedback loop to promote the proliferation and migration of HCC cells. Moreover, E2F1/USP11 inhibited autophagy by regulating ERK/mTOR pathway. In addition, the combination treatment inhibition of USP11 and autophagy enhanced the apoptosis of HCC cells and inhibited the tumor growth in mice more effective than either treatment alone. Taken together, these results indicate that the E2F1/USP11 signal axis promotes HCC proliferation and metastasis and inhibits autophagy, which provides an experimental basis for the treatment of HCC.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Autofagia / Tioléster Hidrolases / Carcinoma Hepatocelular / Sistema de Sinalização das MAP Quinases / Fator de Transcrição E2F1 / Serina-Treonina Quinases TOR / Neoplasias Hepáticas Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans Idioma: En Revista: Cancer Lett Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Autofagia / Tioléster Hidrolases / Carcinoma Hepatocelular / Sistema de Sinalização das MAP Quinases / Fator de Transcrição E2F1 / Serina-Treonina Quinases TOR / Neoplasias Hepáticas Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans Idioma: En Revista: Cancer Lett Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China