Your browser doesn't support javascript.
loading
Theory of temperature-dependent consumer-resource interactions.
Synodinos, Alexis D; Haegeman, Bart; Sentis, Arnaud; Montoya, José M.
Afiliação
  • Synodinos AD; Theoretical and Experimental Ecology Station, CNRS, Moulis, France.
  • Haegeman B; Theoretical and Experimental Ecology Station, CNRS, Moulis, France.
  • Sentis A; INRAE, Aix Marseille University, UMR RECOVER, Aix-en-Provence, France.
  • Montoya JM; Theoretical and Experimental Ecology Station, CNRS, Moulis, France.
Ecol Lett ; 24(8): 1539-1555, 2021 Aug.
Article em En | MEDLINE | ID: mdl-34120390
Changes in temperature affect consumer-resource interactions, which underpin the functioning of ecosystems. However, existing studies report contrasting predictions regarding the impacts of warming on biological rates and community dynamics. To improve prediction accuracy and comparability, we develop an approach that combines sensitivity analysis and aggregate parameters. The former determines which biological parameters impact the community most strongly. The use of aggregate parameters (i.e., maximal energetic efficiency, ρ, and interaction strength, κ), that combine multiple biological parameters, increases explanatory power and reduces the complexity of theoretical analyses. We illustrate the approach using empirically derived thermal dependence curves of biological rates and applying it to consumer-resource biomass ratio and community stability. Based on our analyses, we generate four predictions: (1) resource growth rate regulates biomass distributions at mild temperatures, (2) interaction strength alone determines the thermal boundaries of the community, (3) warming destabilises dynamics at low and mild temperatures only and (4) interactions strength must decrease faster than maximal energetic efficiency for warming to stabilise dynamics. We argue for the potential benefits of directly working with the aggregate parameters to increase the accuracy of predictions on warming impacts on food webs and promote cross-system comparisons.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ecossistema / Cadeia Alimentar Idioma: En Revista: Ecol Lett Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ecossistema / Cadeia Alimentar Idioma: En Revista: Ecol Lett Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França