Your browser doesn't support javascript.
loading
Pathways of the Extremely Reactive Iron(IV)-oxido complexes with Tetradentate Bispidine Ligands.
Abu-Odeh, Mahmud; Bleher, Katharina; Johnee Britto, Neethinathan; Comba, Peter; Gast, Michael; Jaccob, Madhavan; Kerscher, Marion; Krieg, Saskia; Kurth, Marius.
Afiliação
  • Abu-Odeh M; Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, 69120, Heidelberg, Germany.
  • Bleher K; Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, 69120, Heidelberg, Germany.
  • Johnee Britto N; Department of Chemistry, Loyola College, Chennai, 600034, India.
  • Comba P; Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, 69120, Heidelberg, Germany.
  • Gast M; Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR) Mathematikon, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany.
  • Jaccob M; Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, 69120, Heidelberg, Germany.
  • Kerscher M; Department of Chemistry, Loyola College, Chennai, 600034, India.
  • Krieg S; Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, 69120, Heidelberg, Germany.
  • Kurth M; Anorganisch-Chemisches Institut, Universität Heidelberg, INF 270, 69120, Heidelberg, Germany.
Chemistry ; 27(44): 11377-11390, 2021 Aug 05.
Article em En | MEDLINE | ID: mdl-34121233
ABSTRACT
The nonheme iron(IV)-oxido complex trans-N3-[(L1 )FeIV =O(Cl)]+ , where L1 is a derivative of the tetradentate bispidine 2,4-di(pyridine-2-yl)-3,7-diazabicyclo[3.3.1]nonane-1-one, is known to have an S=1 electronic ground state and to be an extremely reactive oxidant for oxygen atom transfer (OAT) and hydrogen atom abstraction (HAA) processes. Here we show that, in spite of this ferryl oxidant having the "wrong" spin ground state, it is the most reactive nonheme iron model system known so far and of a similar order of reactivity as nonheme iron enzymes (C-H abstraction of cyclohexane, -90 °C (propionitrile), t1/2 =3.5 sec). Discussed are spectroscopic and kinetic data, supported by a DFT-based theoretical analysis, which indicate that substrate oxidation is significantly faster than self-decay processes due to an intramolecular demethylation pathway and formation of an oxido-bridged diiron(III) intermediate. It is also shown that the iron(III)-chlorido-hydroxido/cyclohexyl radical intermediate, resulting from C-H abstraction, selectively produces chlorocyclohexane in a rebound process. However, the life-time of the intermediate is so long that other reaction channels (known as cage escape) become important, and much of the C-H abstraction therefore is unproductive. In bulk reactions at ambient temperature and at longer time scales, there is formation of significant amounts of oxidation product - selectively of chlorocyclohexane - and it is shown that this originates from oxidation of the oxido-bridged diiron(III) resting state.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos Férricos / Ferro Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos Férricos / Ferro Idioma: En Revista: Chemistry Assunto da revista: QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha