Your browser doesn't support javascript.
loading
Deep learning-based framework for the distinction of membranous nephropathy: a new approach through hyperspectral imagery.
Tu, Tianqi; Wei, Xueling; Yang, Yue; Zhang, Nianrong; Li, Wei; Tu, Xiaowen; Li, Wenge.
Afiliação
  • Tu T; Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.
  • Wei X; Department of Nephrology, China-Japan Friendship Hospital, Beijing, China.
  • Yang Y; Department of Biomedical Engineering, Tsinghua University, Beijing, China.
  • Zhang N; Department of Nephrology, China-Japan Friendship Hospital, Beijing, China.
  • Li W; Department of Nephrology, China-Japan Friendship Hospital, Beijing, China.
  • Tu X; School of Information and Electronics, Beijing Institute of Technology, Beijing, China. wengelee_2002@126.com.
  • Li W; Department of Nephrology, PLA Rocket Force Characteristic Medical Center, Beijing, China. xiaowentu@126.com.
BMC Nephrol ; 22(1): 231, 2021 06 19.
Article em En | MEDLINE | ID: mdl-34147076
BACKGROUND: Common subtypes seen in Chinese patients with membranous nephropathy (MN) include idiopathic membranous nephropathy (IMN) and hepatitis B virus-related membranous nephropathy (HBV-MN). However, the morphologic differences are not visible under the light microscope in certain renal biopsy tissues. METHODS: We propose here a deep learning-based framework for processing hyperspectral images of renal biopsy tissue to define the difference between IMN and HBV-MN based on the component of their immune complex deposition. RESULTS: The proposed framework can achieve an overall accuracy of 95.04% in classification, which also leads to better performance than support vector machine (SVM)-based algorithms. CONCLUSION: IMN and HBV-MN can be correctly separated via the deep learning framework using hyperspectral imagery. Our results suggest the potential of the deep learning algorithm as a new method to aid in the diagnosis of MN.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Glomerulonefrite Membranosa / Diagnóstico por Computador / Aprendizado Profundo Tipo de estudo: Diagnostic_studies Limite: Adult / Female / Humans / Male Idioma: En Revista: BMC Nephrol Assunto da revista: NEFROLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Glomerulonefrite Membranosa / Diagnóstico por Computador / Aprendizado Profundo Tipo de estudo: Diagnostic_studies Limite: Adult / Female / Humans / Male Idioma: En Revista: BMC Nephrol Assunto da revista: NEFROLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China