Your browser doesn't support javascript.
loading
Application of artificial intelligence methods for monsoonal river classification in Selangor river basin, Malaysia.
Wong, Yong Jie; Shimizu, Yoshihisa; Kamiya, Akinori; Maneechot, Luksanaree; Bharambe, Khagendra Pralhad; Fong, Chng Saun; Nik Sulaiman, Nik Meriam.
Afiliação
  • Wong YJ; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan. wong.jie.88c@st.kyoto-u.ac.jp.
  • Shimizu Y; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
  • Kamiya A; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
  • Maneechot L; International Environment Department, Nippon Koei Co., Ltd, Tokyo, Japan.
  • Bharambe KP; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
  • Fong CS; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
  • Nik Sulaiman NM; Institute for Advanced Studies, University of Malaya, 50603, Kuala Lumpur, Malaysia.
Environ Monit Assess ; 193(7): 438, 2021 Jun 22.
Article em En | MEDLINE | ID: mdl-34159431
ABSTRACT
Rivers in Malaysia are classified based on water quality index (WQI) that comprises of six parameters, namely, ammoniacal nitrogen (AN), biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), pH, and suspended solids (SS). Due to its tropical climate, the impact of seasonal monsoons on river quality is significant, with the increased occurrence of extreme precipitation events; however, there has been little discussion on the application of artificial intelligence models for monsoonal river classification. In light of these, this study had applied artificial neural network (ANN) and support vector machine (SVM) models for monsoonal (dry and wet seasons) river classification using three of the water quality parameters to minimise the cost of river monitoring and associated errors in WQI computation. A structured trial-and-error approach was applied on input parameter selection and hyperparameter optimisation for both models. Accuracy, sensitivity, and precision were selected as the performance criteria. For dry season, BOD-DO-pH was selected as the optimum input combination by both ANN and SVM models, with testing accuracy of 88.7% and 82.1%, respectively. As for wet season, the optimum input combinations of ANN and SVM models were BOD-pH-SS and BOD-DO-pH with testing accuracy of 89.5% and 88.0%, respectively. As a result, both optimised ANN and SVM models have proven their prediction capacities for river classification, which may be deployed as effective and reliable tools in tropical regions. Notably, better learning and higher capacity of the ANN model for dataset characteristics extraction generated better predictability and generalisability than SVM model under imbalanced dataset.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Rios Tipo de estudo: Prognostic_studies / Qualitative_research País/Região como assunto: Asia Idioma: En Revista: Environ Monit Assess Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Rios Tipo de estudo: Prognostic_studies / Qualitative_research País/Região como assunto: Asia Idioma: En Revista: Environ Monit Assess Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão