Electrochemical enrichment of haloalkaliphilic nitrate-reducing microbial biofilm at the cathode of bioelectrochemical systems.
iScience
; 24(6): 102682, 2021 Jun 25.
Article
em En
| MEDLINE
| ID: mdl-34195563
Electrotrophic microorganisms have not been well studied in extreme environments. Here, we report on the nitrate-reducing cathodic microbial biofilm from a haloalkaline environment. The biofilm enriched via electrochemical approach under 9.5 pH and 20 g NaCl/L salinity conditions achieved - 43.5 ± 7.2 µA / cm 2 current density and 49.5 ± 13.2 % nitrate reduction efficiency via partial and complete denitrification. Voltammetric characterization of the biocathodes revealed a redox center with - 0.294 ± 0.003 V (vs. Ag/AgCl) formal potential putatively involved in the electron uptake process. The lack of soluble redox mediators and hydrogen-driven nitrate reduction suggests direct-contact cathodic electron uptake by the nitrate-reducing microorganisms in the enriched biofilm. 16S-rRNA amplicon sequencing of the cathodic biofilm revealed the presence of unreported Pseudomonas, Natronococcus, and Pseudoalteromonas spp. at 31.45 % , 11.82 % , and 9.69 % relative sequence abundances, respectively. The enriched nitrate-reducing microorganisms also reduced nitrate efficiently using soluble electron donors found in the lake sediments, thereby suggesting their role in N-cycling in such environments.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Revista:
IScience
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Índia