Your browser doesn't support javascript.
loading
Biochar-based fertilizer amendments improve the soil microbial community structure in a karst mountainous area.
Yan, Taotao; Xue, Jianhui; Zhou, Zhidong; Wu, Yongbo.
Afiliação
  • Yan T; College of Biology and the Environment, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China. Electronic address: ecologyan@njfu.edu.cn.
  • Xue J; College of Biology and the Environment, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China. Electronic address
  • Zhou Z; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.
  • Wu Y; College of Biology and the Environment, Nanjing Forestry University, Nanjing, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
Sci Total Environ ; 794: 148757, 2021 Nov 10.
Article em En | MEDLINE | ID: mdl-34225142
ABSTRACT
Biochar-based fertilizer amendment can improve soil properties partly due to stimulated microbial activities and growths. The karst ecosystem is prone to degradation and accounts for a large proportion of southwest China. Understanding of the response of the microbial community structure to biochar-based fertilizer application is of great significance in karst soil restoration. A field experiment located in southwest China was conducted in typical karst soil, and a high-throughput sequencing approach was used to investigate the effect of biochar-based fertilizer application on microbial community structure in karst soil. Field trials were set up for 24 months using the following treatments control (CK), compost plus NPK fertilizer (MF), biochar (B), less biochar (half the quantity of biochar in B) plus compost and NPK fertilizer (B1MF), biochar plus compost and NPK fertilizer (BMF), and more biochar (double the quantity of biochar in B) plus compost and NPK fertilizer (B4MF). The results elucidated that BMF and B4MF treatments had higher contents of soil carbon and soil nutrients N, P, and K than the other treatments. Soil microbial abundance and diversity were significantly increased by biochar-based fertilizer amendments (BMF and B4MF), compared to CK (P < 0.05). BMF and B4MF treatments significantly increased the relative abundance of dominant microorganisms, compared to CK (P < 0.05). The difference in the composition of indicator microbes between each treated group indicated that soil amendments altered the microbial community structure. There was a strong correlation between soil properties (soil C-, N-, and P-fractions) and microbial community structure. Furthermore, network analysis revealed that the addition of biochar-based fertilizer increased the scale and complexity of the microbial co-occurrence network. To summarize, the application of biochar-based fertilizer enabled more keystone species in the soil microbial network to participate in soil carbon resource management and soil nutrient cycling, indicating that biochar-based fertilizer is beneficial for the restoration of karst-degraded soils.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fertilizantes / Microbiota Idioma: En Revista: Sci Total Environ Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fertilizantes / Microbiota Idioma: En Revista: Sci Total Environ Ano de publicação: 2021 Tipo de documento: Article