Your browser doesn't support javascript.
loading
In vitro Characterization of Fitness and Convalescent Antibody Neutralization of SARS-CoV-2 Cluster 5 Variant Emerging in Mink at Danish Farms.
Lassaunière, Ria; Fonager, Jannik; Rasmussen, Morten; Frische, Anders; Polacek, Charlotta; Rasmussen, Thomas Bruun; Lohse, Louise; Belsham, Graham J; Underwood, Alexander; Winckelmann, Anni Assing; Bollerup, Signe; Bukh, Jens; Weis, Nina; Sækmose, Susanne Gjørup; Aagaard, Bitten; Alfaro-Núñez, Alonzo; Mølbak, Kåre; Bøtner, Anette; Fomsgaard, Anders.
Afiliação
  • Lassaunière R; Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark.
  • Fonager J; Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark.
  • Rasmussen M; Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark.
  • Frische A; Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark.
  • Polacek C; Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark.
  • Rasmussen TB; Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark.
  • Lohse L; Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark.
  • Belsham GJ; Department of Veterinary and Animal Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
  • Underwood A; Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
  • Winckelmann AA; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark.
  • Bollerup S; Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
  • Bukh J; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark.
  • Weis N; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark.
  • Sækmose SG; Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
  • Aagaard B; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark.
  • Alfaro-Núñez A; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Copenhagen, Denmark.
  • Mølbak K; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
  • Bøtner A; Department of Clinical Immunology, Zealand University Hospital, Naestved, Denmark.
  • Fomsgaard A; Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark.
Front Microbiol ; 12: 698944, 2021.
Article em En | MEDLINE | ID: mdl-34248922
In addition to humans, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can transmit to animals that include hamsters, cats, dogs, mink, ferrets, tigers, lions, cynomolgus macaques, rhesus macaques, and treeshrew. Among these, mink are particularly susceptible. Indeed, 10 countries in Europe and North America reported SARS-CoV-2 infection among mink on fur farms. In Denmark, SARS-CoV-2 spread rapidly among mink farms and spilled-over back into humans, acquiring mutations/deletions with unknown consequences for virulence and antigenicity. Here we describe a mink-associated SARS-CoV-2 variant (Cluster 5) characterized by 11 amino acid substitutions and four amino acid deletions relative to Wuhan-Hu-1. Temporal virus titration, together with genomic and subgenomic viral RNA quantitation, demonstrated a modest in vitro fitness attenuation of the Cluster 5 virus in the Vero-E6 cell line. Potential alterations in antigenicity conferred by amino acid changes in the spike protein that include three substitutions (Y453F, I692V, and M1229I) and a loss of two amino acid residues 69 and 70 (ΔH69/V70), were evaluated in a virus microneutralization assay. Compared to a reference strain, the Cluster 5 variant showed reduced neutralization in a proportion of convalescent human COVID-19 samples. The findings underscore the need for active surveillance SARS-CoV-2 infection and virus evolution in susceptible animal hosts.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Front Microbiol Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Dinamarca

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Front Microbiol Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Dinamarca