Drivers and ecological consequences of arsenite detoxification in aged semi-aerobic landfill.
J Hazard Mater
; 420: 126597, 2021 10 15.
Article
em En
| MEDLINE
| ID: mdl-34252667
Microbial populations responsible for arsenite [As(III)] detoxification were examined in aged refuse treated with 75 µM As(III) under semi-aerobic conditions. As(III) was rapidly oxidized to As(V) via microbial activity, and substantial As was fixed in the solid phase. The abundance of arsenite oxidase genes (aioA) was about four times higher in the moderate As(III) stressed treatment than in the untreated control. Network analysis of microbial community 16S rRNA genes based on MRT (random matrix theory) further illuminated details about microbe-microbe interactions, and showed six ecological clusters. A total of 166 "core" taxa were identified by within-module connectivity and among-module connectivity values. When compared with the control treatment without As(III), 12 putative keystone operational taxonomic units were positively correlated with As(III) oxidation, of which 10 of these were annotated to genera level. Eight genera were associated with As(III) detoxification: Pseudomonas, Paenalcaligenes, Proteiniphilum, Moheibacter, Mobilitalea, Anaerosporobacter, Syntrophomonas and Pusillimonas. Most of those putative keystone taxa were rare species in landfill, which suggests that low-abundance taxa might significantly contribute to As(III) oxidation.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Arsênio
/
Arsenitos
Idioma:
En
Revista:
J Hazard Mater
Assunto da revista:
SAUDE AMBIENTAL
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
China