Your browser doesn't support javascript.
loading
Influence of Genotype on High Glucosinolate Synthesis Lines of Brassica rapa.
Soundararajan, Prabhakaran; Park, Sin-Gi; Won, So Youn; Moon, Mi-Sun; Park, Hyun Woo; Ku, Kang-Mo; Kim, Jung Sun.
Afiliação
  • Soundararajan P; Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
  • Park SG; Bioinformatics Team of Theragen Etex Institute, Suwon 16229, Korea.
  • Won SY; Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
  • Moon MS; Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
  • Park HW; Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wansan-gu, Jeonju 54874, Korea.
  • Ku KM; BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea.
  • Kim JS; Department of Horticulture, Chonnam National University, Gwangju 61186, Korea.
Int J Mol Sci ; 22(14)2021 Jul 07.
Article em En | MEDLINE | ID: mdl-34298919
ABSTRACT
This study was conducted to investigate doubled haploid (DH) lines produced between high GSL (HGSL) Brassica rapa ssp. trilocularis (yellow sarson) and low GSL (LGSL) B. rapa ssp. chinensis (pak choi) parents. In total, 161 DH lines were generated. GSL content of HGSL DH lines ranged from 44.12 to 57.04 µmol·g-1·dry weight (dw), which is within the level of high GSL B. rapa ssp. trilocularis (47.46 to 59.56 µmol g-1 dw). We resequenced five of the HGSL DH lines and three of the LGSL DH lines. Recombination blocks were formed between the parental and DH lines with 108,328 single-nucleotide polymorphisms in all chromosomes. In the measured GSL, gluconapin occurred as the major substrate in HGSL DH lines. Among the HGSL DH lines, BrYSP_DH005 had glucoraphanin levels approximately 12-fold higher than those of the HGSL mother plant. The hydrolysis capacity of GSL was analyzed in HGSL DH lines with a Korean pak choi cultivar as a control. Bioactive compounds, such as 3-butenyl isothiocyanate, 4-pentenyl isothiocyanate, 2-phenethyl isothiocyanate, and sulforaphane, were present in the HGSL DH lines at 3-fold to 6.3-fold higher levels compared to the commercial cultivar. The selected HGSL DH lines, resequencing data, and SNP identification were utilized for genome-assisted selection to develop elite GSL-enriched cultivars and the industrial production of potential anti-cancerous metabolites such as gluconapin and glucoraphanin.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Brassica rapa / Glucosinolatos Idioma: En Revista: Int J Mol Sci Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Brassica rapa / Glucosinolatos Idioma: En Revista: Int J Mol Sci Ano de publicação: 2021 Tipo de documento: Article