Your browser doesn't support javascript.
loading
Rational Surface-Defect Control via Designed Passivation for High-Efficiency Inorganic Perovskite Solar Cells.
Gu, Xiaojing; Xiang, Wanchun; Tian, Qingwen; Liu, Shengzhong Frank.
Afiliação
  • Gu X; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China.
  • Xiang W; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China.
  • Tian Q; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China.
  • Liu SF; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China.
Angew Chem Int Ed Engl ; 60(43): 23164-23170, 2021 Oct 18.
Article em En | MEDLINE | ID: mdl-34405503
ABSTRACT
Iodine vacancies (VI ) and undercoordinated Pb2+ on the surface of all-inorganic perovskite films are mainly responsible for nonradiative charge recombination. An environmentally benign material, histamine (HA), is used to passivate the VI in perovskite films. A theoretical study shows that HA bonds to the VI on the surface of the perovskite film via a Lewis base-acid interaction; an additional hydrogen bond (H-bond) strengthens such interaction owing to the favorable molecular configuration of HA. Undercoordinated Pb2+ and Pb clusters are passivated, leading to significantly reduced surface trap density and prolonged charge lifetime within the perovskite films. HA passivation also induces an upward shift of the energy band edge of the perovskite layer, facilitating interfacial hole transfer. The combination of the above raises the solar cell efficiency from 19.5 to 20.8 % under 100 mW cm-2 illumination, the highest efficiency so far for inorganic metal halide perovskite solar cells (PSCs).
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China