Your browser doesn't support javascript.
loading
Insights into the Host Specificity of a New Oomycete Root Pathogen, Pythium brassicum P1: Whole Genome Sequencing and Comparative Analysis Reveals Contracted Regulation of Metabolism, Protein Families, and Distinct Pathogenicity Repertoire.
Mohammadi, Mojtaba; Smith, Eric A; Stanghellini, Michael E; Kaundal, Rakesh.
Afiliação
  • Mohammadi M; Department of Microbiology and Plant Pathology, University of California, 900 University Ave., Riverside, CA 92521, USA.
  • Smith EA; Department of Microbiology and Plant Pathology, University of California, 900 University Ave., Riverside, CA 92521, USA.
  • Stanghellini ME; Department of Microbiology and Plant Pathology, University of California, 900 University Ave., Riverside, CA 92521, USA.
  • Kaundal R; Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, 4820 Old Main Hill, Logan, UT 84322, USA.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article em En | MEDLINE | ID: mdl-34445718
ABSTRACT
Pythium brassicum P1 Stanghellini, Mohammadi, Förster, and Adaskaveg is an oomycete root pathogen that has recently been characterized. It only attacks plant species belonging to Brassicaceae family, causing root necrosis, stunting, and yield loss. Since P. brassicum P1 is limited in its host range, this prompted us to sequence its whole genome and compare it to those of broad host range Pythium spp. such as P. aphanidermatum and P. ultimum var. ultimum. A genomic DNA library was constructed with a total of 374 million reads. The sequencing data were assembled using SOAPdenovo2, yielding a total genome size of 50.3 Mb contained in 5434 scaffolds, N50 of 30.2 Kb, 61.2% G+C content, and 13,232 putative protein-coding genes. Pythium brassicum P1 had 175 species-specific gene families, which is slightly below the normal average. Like P. ultimum, P. brassicum P1 genome did not encode any classical RxLR effectors or cutinases, suggesting a significant difference in virulence mechanisms compared to other oomycetes. Pythium brassicum P1 had a much smaller proportions of the YxSL sequence motif in both secreted and non-secreted proteins, relative to other Pythium species. Similarly, P. brassicum P1 had the fewest Crinkler (CRN) effectors of all the Pythium species. There were 633 proteins predicted to be secreted in the P. brassicum P1 genome, which is, again, slightly below average among Pythium genomes. Pythium brassicum P1 had only one cadherin gene with calcium ion-binding LDRE and DxND motifs, compared to Pythium ultimum having four copies. Pythium brassicum P1 had a reduced number of proteins falling under carbohydrate binding module and hydrolytic enzymes. Pythium brassicum P1 had a reduced complement of cellulase and pectinase genes in contrast to P. ultimum and was deficient in xylan degrading enzymes. The contraction in ABC transporter families in P. brassicum P1 is suggested to be the result of a lack of diversity in nutrient uptake and therefore host range.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pythium / Especificidade de Hospedeiro Idioma: En Revista: Int J Mol Sci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pythium / Especificidade de Hospedeiro Idioma: En Revista: Int J Mol Sci Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos