Your browser doesn't support javascript.
loading
Classification of Ataxic Gait.
Vysata, Oldrich; Tupa, Ondrej; Procházka, Ales; Dolezal, Rafael; Cejnar, Pavel; Bhorkar, Aprajita Milind; Dostál, Ondrej; Valis, Martin.
Afiliação
  • Vysata O; Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic.
  • Tupa O; Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Praha 6, Czech Republic.
  • Procházka A; Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Praha 6, Czech Republic.
  • Dolezal R; Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, 160 00 Prague 6, Czech Republic.
  • Cejnar P; Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic.
  • Bhorkar AM; Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, 166 28 Praha 6, Czech Republic.
  • Dostál O; Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic.
  • Valis M; Department of Neurology, Faculty of Medicine in Hradec Králové, Charles University, 500 03 Hradec Králové, Czech Republic.
Sensors (Basel) ; 21(16)2021 Aug 19.
Article em En | MEDLINE | ID: mdl-34451018
Gait disorders accompany a number of neurological and musculoskeletal disorders that significantly reduce the quality of life. Motion sensors enable high-quality modelling of gait stereotypes. However, they produce large volumes of data, the evaluation of which is a challenge. In this publication, we compare different data reduction methods and classification of reduced data for use in clinical practice. The best accuracy achieved between a group of healthy individuals and patients with ataxic gait extracted from the records of 43 participants (23 ataxic, 20 healthy), forming 418 segments of straight gait pattern, is 98% by random forest classifier preprocessed by t-distributed stochastic neighbour embedding.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Qualidade de Vida / Transtornos Neurológicos da Marcha Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: República Tcheca

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Qualidade de Vida / Transtornos Neurológicos da Marcha Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: República Tcheca