Your browser doesn't support javascript.
loading
CORONA-Net: Diagnosing COVID-19 from X-ray Images Using Re-Initialization and Classification Networks.
Elbishlawi, Sherif; Abdelpakey, Mohamed H; Shehata, Mohamed S; Mohamed, Mostafa M.
Afiliação
  • Elbishlawi S; Department of Computer Science, Math, Physics, and Statistics, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada.
  • Abdelpakey MH; Department of Computer Science, Math, Physics, and Statistics, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada.
  • Shehata MS; Department of Computer Science, Math, Physics, and Statistics, The University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada.
  • Mohamed MM; Electrical and Computer Engineering Department, University of Calgary, Calgary, AB T2N 1N4, Canada.
J Imaging ; 7(5)2021 Apr 28.
Article em En | MEDLINE | ID: mdl-34460677
The COVID-19 pandemic has been deemed a global health pandemic. The early detection of COVID-19 is key to combating its outbreak and could help bring this pandemic to an end. One of the biggest challenges in combating COVID-19 is accurate testing for the disease. Utilizing the power of Convolutional Neural Networks (CNNs) to detect COVID-19 from chest X-ray images can help radiologists compare and validate their results with an automated system. In this paper, we propose a carefully designed network, dubbed CORONA-Net, that can accurately detect COVID-19 from chest X-ray images. CORONA-Net is divided into two phases: (1) The reinitialization phase and (2) the classification phase. In the reinitialization phase, the network consists of encoder and decoder networks. The objective of this phase is to train and initialize the encoder and decoder networks by a distribution that comes out of medical images. In the classification phase, the decoder network is removed from CORONA-Net, and the encoder network acts as a backbone network to fine-tune the classification phase based on the learned weights from the reinitialization phase. Extensive experiments were performed on a publicly available dataset, COVIDx, and the results show that CORONA-Net significantly outperforms the current state-of-the-art networks with an overall accuracy of 95.84%.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Screening_studies Idioma: En Revista: J Imaging Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Screening_studies Idioma: En Revista: J Imaging Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Canadá