Your browser doesn't support javascript.
loading
Simple linear ionic polysiloxane showing unexpected nanostructure and mechanical properties.
Hara, Mitsuo; Iijima, Yuta; Nagano, Shusaku; Seki, Takahiro.
Afiliação
  • Hara M; Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan. mhara@chembio.nagoya-u.ac.jp.
  • Iijima Y; Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan.
  • Nagano S; Tosoh Corporation, 1-8 Kasumi, Yokkaichi, 510-8540, Japan.
  • Seki T; Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo, 171-8501, Japan.
Sci Rep ; 11(1): 17683, 2021 Sep 03.
Article em En | MEDLINE | ID: mdl-34480066
ABSTRACT
Polysiloxanes are ubiquitous materials in industry and daily life derived from silicates, an abundant resource. They exhibit various properties, which depend on the main-chain network structure. Linear (1D backbone) polysiloxanes provide amorphous materials. They are recognized as fluid materials in the form of grease or oil with a low glass transition temperature. Herein we report that a simple linear polysiloxane, poly(3-aminopropylmethylsiloxane) hydrochloride, shows an elastic modulus comparable to that of stiff resins such as poly(tetrafluoroethylene). By introducing an ammonium salt at all the units of this polysiloxane, inter- and intramolecular ionic aggregates form, immensely enhancing the elastic modulus. This polysiloxane is highly hygroscopic, and its modulus can be altered reversibly 100 million times between moist and dry atmospheres. In addition, it works as a good adhesive for glass substrates with a shear strength of more than 1 MPa in the dry state. Despite its simple structure with a flexible backbone, this polymer unexpectedly self-assembles to form an ordered lamellar nanostructure in dry conditions. Consequently, this work reveals new functions and possibilities for polysiloxanes materials by densely introducing ionic groups.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão