Identification of circular RNA circVPS33A as a modulator in house dust mite-induced injury in human bronchial epithelial cells.
Exp Lung Res
; 47(8): 368-381, 2021 10.
Article
em En
| MEDLINE
| ID: mdl-34511010
BACKGROUND: House dust mite has been well documented as a major source of allergen in asthma. Circular RNAs (circRNAs) vacuolar protein sorting 33A (circVPS33A, circ_0000455) is overexpressed in a murine asthma model. Herein, we sought to identify its critical action in Dermatophagoides pteronyssinus peptidase 1 (Der p1)-induced dysfunction of BEAS-2B cells. METHODS: The levels of circVPS33A, microRNA (miR)-192-5p, and high-mobility group box 1 (HMGB1) were assessed by quantitative real-time PCR (qRT-PCR) or western blot. Actinomycin D treatment and Ribonuclease R (RNase R) assay were used to characterize circVPS33A. Cell viability, proliferation, apoptosis, migration, and invasion were evaluated by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and transwell assays, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to quantify interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and IL-6. Direct relationship between miR-192-5p and circVPS33A or HMGB1 was verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assay. RESULTS: CircVPS33A was highly expressed in asthma plasma and Der p1-treated BEAS-2B cells. Knocking down circVPS33A suppressed Der p1-induced injury in BEAS-2B cells. CircVPS33A targeted miR-192-5p. MiR-192-5p directly targeted HMGB1, and miR-192-5p-mediated repression of HMGB1 alleviated Der p1-driven cell injury. Furthermore, circVPS33A modulated HMGB1 expression through miR-192-5p. CONCLUSION: Our findings demonstrated that circVPS33A regulated house dust mite-induced injury in human bronchial epithelial cells at least partially depending on the modulation of the miR-192-5p/HMGB1 axis.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
MicroRNAs
/
Antígenos de Dermatophagoides
/
Células Epiteliais
/
RNA Circular
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Exp Lung Res
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
China