Your browser doesn't support javascript.
loading
Acoustophoretic Liquefaction for 3D Printing Ultrahigh-Viscosity Nanoparticle Suspensions.
Liu, Zheng; Pan, Wenyang; Wang, Kaiyang; Matia, Yoav; Xu, Artemis; Barreiros, Jose A; Darkes-Burkey, Cameron; Giannelis, Emmanuel P; Mengüç, Yigit; Shepherd, Robert F; Wallin, Thomas J.
Afiliação
  • Liu Z; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
  • Pan W; Facebook Reality Labs Research, Redmond, WA, 98052, USA.
  • Wang K; Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA.
  • Matia Y; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
  • Xu A; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
  • Barreiros JA; Department of Systems Science and Engineering, Cornell University, Ithaca, NY, 14853, USA.
  • Darkes-Burkey C; Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA.
  • Giannelis EP; Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA.
  • Mengüç Y; Facebook Reality Labs Research, Redmond, WA, 98052, USA.
  • Shepherd RF; Collaborative Robotics and Intelligent Systems (CoRIS) Institute, Oregon State University, Corvallis, OR, 97331, USA.
  • Wallin TJ; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA.
Adv Mater ; 34(7): e2106183, 2022 Feb.
Article em En | MEDLINE | ID: mdl-34601774
ABSTRACT
An acoustic liquefaction approach to enhance the flow of yield stress fluids during Digital Light Processing (DLP)-based 3D printing is reported. This enhanced flow enables processing of ultrahigh-viscosity resins (µapp  > 3700 Pa s at shear rates γ ˙  = 0.01 s-1 ) based on silica particles in a silicone photopolymer. Numerical simulations of the acousto-mechanical coupling in the DLP resin feed system at different agitation frequencies predict local resin flow velocities exceeding 100 mm s-1 at acoustic transduction frequencies of 110 s-1 . Under these conditions, highly loaded particle suspensions (weight fractions, ϕ = 0.23) can be printed successfully in complex geometries. Such mechanically reinforced composites possess a tensile toughness 2000% greater than the neat photopolymer. Beyond an increase in processible viscosities, acoustophoretic liquefaction DLP (AL-DLP) creates a transient reduction in apparent viscosity that promotes resin recirculation and decreases viscous adhesion. As a result, acoustophoretic liquefaction Digital Light Processing (AL-DLP) improves the printed feature resolution by more than 25%, increases printable object sizes by over 50 times, and can build parts >3 × faster when compared to conventional methodologies.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos