The preoperative machine learning algorithm for extremity metastatic disease can predict 90-day and 1-year survival: An external validation study.
J Surg Oncol
; 125(2): 282-289, 2022 Feb.
Article
em En
| MEDLINE
| ID: mdl-34608991
BACKGROUND: The prediction of survival is valuable to optimize treatment of metastatic long-bone disease. The Skeletal Oncology Research Group (SORG) machine-learning (ML) algorithm has been previously developed and internally validated. The purpose of this study was to determine if the SORG ML algorithm accurately predicts 90-day and 1-year survival in an external metastatic long-bone disease patient cohort. METHODS: A retrospective review of 264 patients who underwent surgery for long-bone metastases between 2003 and 2019 was performed. Variables used in the stochastic gradient boosting SORG algorithm were age, sex, primary tumor type, visceral/brain metastases, systemic therapy, and 10 preoperative laboratory values. Model performance was calculated by discrimination, calibration, and overall performance. RESULTS: The SORG ML algorithms retained good discriminative ability (area under the cure [AUC]: 0.83; 95% confidence interval [CI]: 0.76-0.88 for 90-day mortality and AUC: 0.84; 95% CI: 0.79-0.88 for 1-year mortality), calibration, overall performance, and decision curve analysis. CONCLUSION: The previously developed ML algorithms demonstrated good performance in the current study, thereby providing external validation. The models were incorporated into an accessible application (https://sorg-apps.shinyapps.io/extremitymetssurvival/) that may be freely utilized by clinicians in helping predict survival for individual patients and assist in informative decision-making discussion before operative management of long bone metastatic lesions.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Neoplasias Ósseas
/
Aprendizado de Máquina
Tipo de estudo:
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Aged
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
J Surg Oncol
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Estados Unidos