Your browser doesn't support javascript.
loading
Molecular signatures of Janthinobacterium lividum from Trinidad support high potential for crude oil metabolism.
Ramdass, Amanda C; Rampersad, Sephra N.
Afiliação
  • Ramdass AC; Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago.
  • Rampersad SN; Biochemistry Research Lab (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago. sephra.rampersad@sta.uwi.edu.
BMC Microbiol ; 21(1): 287, 2021 10 20.
Article em En | MEDLINE | ID: mdl-34670489
BACKGROUND: Janthinobacterium lividum is considered to be a psychrotrophic bacterial species. For the first time in the literature, J. lividum strains were isolated from Trinidad presenting with atypical features - hydrocarbonoclastic and able to survive in a tropical environment. METHODS: Identification of the Trinidad strains was carried out through 16S rRNA phylogenetic analysis. Gene-specific primers were designed to target the VioA which encodes violacein pigment and the EstA/B gene which encodes secreted extracellular lipase. Bioinformatics analyses were carried out on the nucleotide and amino acid sequences of VioA and EstA/B genes of the Trinidad Janthinobacterium strains to assess functionality and phylogenetic relatedness to other Janthinobacterium sequences specifically and more broadly, to other members of the Oxalobacteraceae family of betaproteobacteria. RESULTS: 16S rRNA confirmed the identity of the Trinidad strains as J. lividum and resolved three of the Trinidad strains at the intra-specific level. Typical motility patterns of this species were recorded. VioAp sequences were highly conserved, however, synonymous substitutions located outside of the critical sites for enzyme function were detected for the Trinidad strains. Comparisons with PDB 6g2p model from aa231 to aa406 further indicated no functional disruption of the VioA gene of the Trinidad strains. Phylogeny of the VioA protein sequences inferred placement of all J. lividum taxa into a highly supported species-specific clade (bs = 98%). EstA/Bp sequences were highly conserved, however, synonymous substitutions were detected that were unique to the Trinidad strains. Phylogenetic inference positioned the Trinidad consensus VioA and EstA protein sequences in a clearly distinct branch. CONCLUSIONS: The findings showed that the primary sequence of VioAp and EstA/Bp were unique to the Trinidad strains and these molecular signatures were reflected in phylogenetic inference. Our results supported chemotaxis, possible elective inactivation of VioA gene expression and secreted lipase activity as survival mechanisms of the Trinidad strains in petrogenic conditions.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Petróleo / Oxalobacteraceae Tipo de estudo: Prognostic_studies País/Região como assunto: Caribe ingles / Trinidad y tobago Idioma: En Revista: BMC Microbiol Assunto da revista: MICROBIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Trinidad e Tobago

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Petróleo / Oxalobacteraceae Tipo de estudo: Prognostic_studies País/Região como assunto: Caribe ingles / Trinidad y tobago Idioma: En Revista: BMC Microbiol Assunto da revista: MICROBIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Trinidad e Tobago