Your browser doesn't support javascript.
loading
Genomic Characterization of Serotype III/ST-17 Group B Streptococcus Strains with Antimicrobial Resistance Using Whole Genome Sequencing.
Hsu, Jen-Fu; Tsai, Ming-Horng; Lin, Lee-Chung; Chu, Shih-Ming; Lai, Mei-Yin; Huang, Hsuan-Rong; Chiang, Ming-Chou; Yang, Peng-Hong; Lu, Jang-Jih.
Afiliação
  • Hsu JF; Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
  • Tsai MH; College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
  • Lin LC; College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
  • Chu SM; Division of Neonatology and Pediatric Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 638, Taiwan.
  • Lai MY; Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan.
  • Huang HR; Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
  • Chiang MC; College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
  • Yang PH; Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan.
  • Lu JJ; College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
Biomedicines ; 9(10)2021 Oct 15.
Article em En | MEDLINE | ID: mdl-34680594
ABSTRACT

Background:

Antibiotic-resistant type III/ST-17 Streptococcus agalactiae (group B Streptococcus, GBS) strain is predominant in neonatal invasive GBS diseases. We aimed to investigate the antibiotic resistance profiles and genetic characteristics of type III/ST-17 GBS strains.

Methods:

A total of 681 non-duplicate GBS isolates were typed (MLST, capsular types) and their antibiotic resistances were performed. Several molecular methods (WGS, PCR, sequencing and sequence analysis) were used to determine the genetic context of antibiotic resistant genes and pili genes.

Results:

The antibiotic resistant rates were significantly higher in type Ib (90.1%) and type III (71.1%) GBS isolates. WGS revealed that the loss of PI-1 genes and absence of ISSag5 was found in antibiotic-resistant III/ST-17 GBS isolates, which is replaced by a ~75-kb integrative and conjugative element, ICESag37, comprising multiple antibiotic resistance and virulence genes. Among 190 serotype III GBS isolates, the most common pilus island was PI-2b (58.4%) alone, which was found in 81.3% of the III/ST-17 GBS isolates. Loss of PI-1 and ISSag5 was significantly associated with antibiotic resistance (95.5% vs. 27.8%, p < 0.001). The presence of ICESag37 was found in 83.6% of all III/ST-17 GBS isolates and 99.1% (105/106) of the antibiotic-resistant III/ST-17 GBS isolates.

Conclusions:

Loss of PI-1 and ISSag5, which is replaced by ICESag37 carrying multiple antibiotic resistance genes, accounts for the high antibiotic resistance rate in III/ST-17 GBS isolates. The emerging clonal expansion of this hypervirulent strain with antibiotic resistance after acquisition of ICESag37 highlights the urgent need for continuous surveillance of GBS infections.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Biomedicines Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Taiwan

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Biomedicines Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Taiwan