Your browser doesn't support javascript.
loading
Pretreatment of sludge with sodium iron chlorophyllin-H2O2 for enhanced biogas production during anaerobic digestion.
Li, Zhen; Chen, Shuo; Liu, Bingchuan; Yang, Jiakuan; Liang, Sha; Xiao, Keke; Hu, Jingping; Hou, Huijie.
Afiliação
  • Li Z; School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China.
  • Chen S; School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China.
  • Liu B; School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China.
  • Yang J; School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong Univers
  • Liang S; School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China.
  • Xiao K; School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China.
  • Hu J; School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong Univers
  • Hou H; School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, 430074, PR China. Electronic address: houhuijie@hust.edu.cn.
Environ Res ; 204(Pt C): 112223, 2022 03.
Article em En | MEDLINE | ID: mdl-34688644
ABSTRACT
This study investigated a novel sodium iron chlorophyllin-H2O2 (SIC-H2O2) sludge pretreatment strategy before anaerobic digestion to enhance methane production. The efficiencies and mechanism of the proposed strategy to enhance sludge biodegradability were explored. The SIC-H2O2 pretreatment could enhance the oxidation performance for sludge floc disintegration to dissociate TB-EPS into S-EPS increased SCOD to 521.38 mg/L. The increase of solubilization and release of EPS with the pretreatment facilitate the biogas production at 702 L kg-1 VS, which was 3-folds of the control and significantly higher than other pretreatments. The result of excitation-emission matrix and parallel factor (EEM-PARAFAC) analysis showed that the SIC-H2O2 pretreatment enhanced the dissociation of TB-EPS fractions, especially the protein-like and soluble microbial by-product-like substances. Electron paramagnetic resonance (EPR) results provided evidence for homolytic catalysis H2O2 for the generation OH and the production of high-valent (Por)FeIV(O) intermediates. Synergistic effects of reactive oxygen species (OH, H2O2 and /HO2) and (Por)FeIV(O) enhanced the EPS disintegration during SIC-H2O2 pretreatment. The mixed-acid type fermentation provided continuous VFAs supply under the enrichment of Chloroflexi and Actinobacteria and multiplication Methanosaeta also promoted methane production. This research provides a feasible pretreatment strategy increase sludge biodegradability and enhance biogas production in the anaerobic digestion process.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esgotos / Biocombustíveis Idioma: En Revista: Environ Res Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Esgotos / Biocombustíveis Idioma: En Revista: Environ Res Ano de publicação: 2022 Tipo de documento: Article