Your browser doesn't support javascript.
loading
Deep Learning of the Retina Enables Phenome- and Genome-Wide Analyses of the Microvasculature.
Zekavat, Seyedeh Maryam; Raghu, Vineet K; Trinder, Mark; Ye, Yixuan; Koyama, Satoshi; Honigberg, Michael C; Yu, Zhi; Pampana, Akhil; Urbut, Sarah; Haidermota, Sara; O'Regan, Declan P; Zhao, Hongyu; Ellinor, Patrick T; Segrè, Ayellet V; Elze, Tobias; Wiggs, Janey L; Martone, James; Adelman, Ron A; Zebardast, Nazlee; Del Priore, Lucian; Wang, Jay C; Natarajan, Pradeep.
Afiliação
  • Zekavat SM; Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT (S.M.Z., J.M., R.A.A., L.D.P., J.C.W.).
  • Raghu VK; Computational Biology & Bioinformatics Program (S.M.Z., Y.Y., H.Z.), Yale University, New Haven, CT.
  • Trinder M; Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.M.Z., V.K.R., M.T., S.K., M.C.H., Z.Y., A.P., S.U., P.T.E., P.N.).
  • Ye Y; Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.M.Z., V.K.R., M.T., S.K., M.C.H., Z.Y., A.P., S.U., P.T.E., P.N.).
  • Koyama S; Cardiovascular Research Center (S.M.Z., V.K.R., M.C.H., S.U., S.H., P.T.E., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston.
  • Honigberg MC; Cardiovascular Imaging Research Center (V.K.R.), Massachusetts General Hospital, Harvard Medical School, Boston.
  • Yu Z; Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada (M.T.).
  • Pampana A; Computational Biology & Bioinformatics Program (S.M.Z., Y.Y., H.Z.), Yale University, New Haven, CT.
  • Urbut S; Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.M.Z., V.K.R., M.T., S.K., M.C.H., Z.Y., A.P., S.U., P.T.E., P.N.).
  • Haidermota S; Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.M.Z., V.K.R., M.T., S.K., M.C.H., Z.Y., A.P., S.U., P.T.E., P.N.).
  • O'Regan DP; Cardiovascular Research Center (S.M.Z., V.K.R., M.C.H., S.U., S.H., P.T.E., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston.
  • Zhao H; Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.M.Z., V.K.R., M.T., S.K., M.C.H., Z.Y., A.P., S.U., P.T.E., P.N.).
  • Ellinor PT; Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.M.Z., V.K.R., M.T., S.K., M.C.H., Z.Y., A.P., S.U., P.T.E., P.N.).
  • Segrè AV; Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.M.Z., V.K.R., M.T., S.K., M.C.H., Z.Y., A.P., S.U., P.T.E., P.N.).
  • Elze T; Cardiovascular Research Center (S.M.Z., V.K.R., M.C.H., S.U., S.H., P.T.E., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston.
  • Wiggs JL; Cardiovascular Research Center (S.M.Z., V.K.R., M.C.H., S.U., S.H., P.T.E., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston.
  • Martone J; MRC London Institute of Medical Sciences, Imperial College London, UK (D.P.O.).
  • Adelman RA; Computational Biology & Bioinformatics Program (S.M.Z., Y.Y., H.Z.), Yale University, New Haven, CT.
  • Zebardast N; School of Public Health (H.Z.), Yale University, New Haven, CT.
  • Del Priore L; Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (S.M.Z., V.K.R., M.T., S.K., M.C.H., Z.Y., A.P., S.U., P.T.E., P.N.).
  • Wang JC; Cardiovascular Research Center (S.M.Z., V.K.R., M.C.H., S.U., S.H., P.T.E., P.N.), Massachusetts General Hospital, Harvard Medical School, Boston.
  • Natarajan P; Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston (A.V.S., T.E., J.L.W., N.Z.).
Circulation ; 145(2): 134-150, 2022 01 11.
Article em En | MEDLINE | ID: mdl-34743558
BACKGROUND: The microvasculature, the smallest blood vessels in the body, has key roles in maintenance of organ health and tumorigenesis. The retinal fundus is a window for human in vivo noninvasive assessment of the microvasculature. Large-scale complementary machine learning-based assessment of the retinal vasculature with phenome-wide and genome-wide analyses may yield new insights into human health and disease. METHODS: We used 97 895 retinal fundus images from 54 813 UK Biobank participants. Using convolutional neural networks to segment the retinal microvasculature, we calculated vascular density and fractal dimension as a measure of vascular branching complexity. We associated these indices with 1866 incident International Classification of Diseases-based conditions (median 10-year follow-up) and 88 quantitative traits, adjusting for age, sex, smoking status, and ethnicity. RESULTS: Low retinal vascular fractal dimension and density were significantly associated with higher risks for incident mortality, hypertension, congestive heart failure, renal failure, type 2 diabetes, sleep apnea, anemia, and multiple ocular conditions, as well as corresponding quantitative traits. Genome-wide association of vascular fractal dimension and density identified 7 and 13 novel loci, respectively, that were enriched for pathways linked to angiogenesis (eg, vascular endothelial growth factor, platelet-derived growth factor receptor, angiopoietin, and WNT signaling pathways) and inflammation (eg, interleukin, cytokine signaling). CONCLUSIONS: Our results indicate that the retinal vasculature may serve as a biomarker for future cardiometabolic and ocular disease and provide insights into genes and biological pathways influencing microvascular indices. Moreover, such a framework highlights how deep learning of images can quantify an interpretable phenotype for integration with electronic health record, biomarker, and genetic data to inform risk prediction and risk modification.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Retina / Genômica / Microvasos / Estudo de Associação Genômica Ampla / Análise da Randomização Mendeliana / Aprendizado Profundo Tipo de estudo: Prognostic_studies Limite: Female / Humans / Male / Middle aged Idioma: En Revista: Circulation Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Retina / Genômica / Microvasos / Estudo de Associação Genômica Ampla / Análise da Randomização Mendeliana / Aprendizado Profundo Tipo de estudo: Prognostic_studies Limite: Female / Humans / Male / Middle aged Idioma: En Revista: Circulation Ano de publicação: 2022 Tipo de documento: Article