Your browser doesn't support javascript.
loading
Multiomics study of a heterotardigrade, Echinisicus testudo, suggests the possibility of convergent evolution of abundant heat-soluble proteins in Tardigrada.
Murai, Yumi; Yagi-Utsumi, Maho; Fujiwara, Masayuki; Tanaka, Sae; Tomita, Masaru; Kato, Koichi; Arakawa, Kazuharu.
Afiliação
  • Murai Y; Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.
  • Yagi-Utsumi M; Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan.
  • Fujiwara M; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
  • Tanaka S; Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
  • Tomita M; Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.
  • Kato K; Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan.
  • Arakawa K; Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, Japan.
BMC Genomics ; 22(1): 813, 2021 Nov 11.
Article em En | MEDLINE | ID: mdl-34763673
ABSTRACT

BACKGROUND:

Many limno-terrestrial tardigrades can enter an ametabolic state, known as anhydrobiosis, upon desiccation, in which the animals can withstand extreme environments. Through genomics studies, molecular components of anhydrobiosis are beginning to be elucidated, such as the expansion of oxidative stress response genes, loss of stress signaling pathways, and gain of tardigrade-specific heat-soluble protein families designated CAHS and SAHS. However, to date, studies have predominantly investigated the class Eutardigrada, and molecular mechanisms in the remaining class, Heterotardigrada, still remains elusive. To address this gap in the research, we report a multiomics study of the heterotardigrade Echiniscus testudo, one of the most desiccation-tolerant species which is not yet culturable in laboratory conditions.

RESULTS:

In order to elucidate the molecular basis of anhydrobiosis in E. testudo, we employed a multi-omics strategy encompassing genome sequencing, differential transcriptomics, and proteomics. Using ultra-low input library sequencing protocol from a single specimen, we sequenced and assembled the 153.7 Mbp genome annotated using RNA-Seq data. None of the previously identified tardigrade-specific abundant heat-soluble genes was conserved, while the loss and expansion of existing pathways were partly shared. Furthermore, we identified two families novel abundant heat-soluble proteins, which we named E. testudo Abundant Heat Soluble (EtAHS), that are predicted to contain large stretches of disordered regions. Likewise the AHS families in eutardigrada, EtAHS shows structural changes from random coil to alphahelix as the water content was decreased in vitro. These characteristics of EtAHS proteins are analogous to those of CAHS in eutardigrades, while there is no conservation at the sequence level.

CONCLUSIONS:

Our results suggest that Heterotardigrada have partly shared but distinct anhydrobiosis machinery compared with Eutardigrada, possibly due to convergent evolution within Tardigrada. (276/350).
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tardígrados Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: BMC Genomics Assunto da revista: GENETICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tardígrados Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: BMC Genomics Assunto da revista: GENETICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão