Your browser doesn't support javascript.
loading
Modular Assembly of Vibrationally and Electronically Coupled Rhenium Bipyridine Carbonyl Complexes on Silicon.
Bartl, Johannes D; Thomas, Christopher; Henning, Alex; Ober, Martina F; Savasci, Gökcen; Yazdanshenas, Bahar; Deimel, Peter S; Magnano, Elena; Bondino, Federica; Zeller, Patrick; Gregoratti, Luca; Amati, Matteo; Paulus, Claudia; Allegretti, Francesco; Cattani-Scholz, Anna; Barth, Johannes V; Ochsenfeld, Christian; Nickel, Bert; Sharp, Ian D; Stutzmann, Martin; Rieger, Bernhard.
Afiliação
  • Bartl JD; Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany.
  • Thomas C; Department of Chemistry, WACKER-Chair for Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany.
  • Henning A; Department of Chemistry, WACKER-Chair for Macromolecular Chemistry, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany.
  • Ober MF; Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany.
  • Savasci G; Faculty of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany.
  • Yazdanshenas B; Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany.
  • Deimel PS; Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
  • Magnano E; Department of Chemistry, University of Munich, LMU, Butenandtstraße 5-13, 81377 Munich, Germany.
  • Bondino F; Cluster of Excellence E-conversion, Lichtenbergstraße 4a, 85748 Garching, Germany.
  • Zeller P; Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany.
  • Gregoratti L; Physics Department E20, Technische Universität München, James-Franck-Straße 1, 85748 Garching bei München, Germany.
  • Amati M; IOM CNR, Laboratorio TASC, AREA Science Park, Strada Statale 14 km 163.5, 34149 Basovizza, Trieste, Italy.
  • Paulus C; Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa.
  • Allegretti F; IOM CNR, Laboratorio TASC, AREA Science Park, Strada Statale 14 km 163.5, 34149 Basovizza, Trieste, Italy.
  • Cattani-Scholz A; Elettra-Sincrotrone Trieste SCpA, AREA Science Park, Strada Statale 14 km 163.5, 34149, Trieste, Italy.
  • Barth JV; Elettra-Sincrotrone Trieste SCpA, AREA Science Park, Strada Statale 14 km 163.5, 34149, Trieste, Italy.
  • Ochsenfeld C; Elettra-Sincrotrone Trieste SCpA, AREA Science Park, Strada Statale 14 km 163.5, 34149, Trieste, Italy.
  • Nickel B; Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany.
  • Sharp ID; Physics Department E20, Technische Universität München, James-Franck-Straße 1, 85748 Garching bei München, Germany.
  • Stutzmann M; Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching bei München, Germany.
  • Rieger B; Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany.
J Am Chem Soc ; 143(46): 19505-19516, 2021 Nov 24.
Article em En | MEDLINE | ID: mdl-34766502
ABSTRACT
Hybrid inorganic/organic heterointerfaces are promising systems for next-generation photocatalytic, photovoltaic, and chemical-sensing applications. Their performance relies strongly on the development of robust and reliable surface passivation and functionalization protocols with (sub)molecular control. The structure, stability, and chemistry of the semiconductor surface determine the functionality of the hybrid assembly. Generally, these modification schemes have to be laboriously developed to satisfy the specific chemical demands of the semiconductor surface. The implementation of a chemically independent, yet highly selective, standardized surface functionalization scheme, compatible with nanoelectronic device fabrication, is of utmost technological relevance. Here, we introduce a modular surface assembly (MSA) approach that allows the covalent anchoring of molecular transition-metal complexes with sub-nanometer precision on any solid material by combining atomic layer deposition (ALD) and selectively self-assembled monolayers of phosphonic acids. ALD, as an essential tool in semiconductor device fabrication, is used to grow conformal aluminum oxide activation coatings, down to sub-nanometer thicknesses, on silicon surfaces to enable a selective step-by-step layer assembly of rhenium(I) bipyridine tricarbonyl molecular complexes. The modular surface assembly of molecular complexes generates precisely structured spatial ensembles with strong intermolecular vibrational and electronic coupling, as demonstrated by infrared spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy analysis. The structure of the MSA can be chosen to avoid electronic interactions with the semiconductor substrate to exclusively investigate the electronic interactions between the surface-immobilized molecular complexes.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha