Your browser doesn't support javascript.
loading
Cortical iron mediates age-related decline in fluid cognition.
Howard, Cortney M; Jain, Shivangi; Cook, Angela D; Packard, Lauren E; Mullin, Hollie A; Chen, Nan-Kuei; Liu, Chunlei; Song, Allen W; Madden, David J.
Afiliação
  • Howard CM; Center for Cognitive Neuroscience, Duke University, Durham, North Carolina, USA.
  • Jain S; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA.
  • Cook AD; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA.
  • Packard LE; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA.
  • Mullin HA; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA.
  • Chen NK; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA.
  • Liu C; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA.
  • Song AW; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA.
  • Madden DJ; Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA.
Hum Brain Mapp ; 43(3): 1047-1060, 2022 02 15.
Article em En | MEDLINE | ID: mdl-34854172
ABSTRACT
Brain iron dyshomeostasis disrupts various critical cellular functions, and age-related iron accumulation may contribute to deficient neurotransmission and cell death. While recent studies have linked excessive brain iron to cognitive function in the context of neurodegenerative disease, little is known regarding the role of brain iron accumulation in cognitive aging in healthy adults. Further, previous studies have focused primarily on deep gray matter regions, where the level of iron deposition is highest. However, recent evidence suggests that cortical iron may also contribute to cognitive deficit and neurodegenerative disease. Here, we used quantitative susceptibility mapping (QSM) to measure brain iron in 67 healthy participants 18-78 years of age. Speed-dependent (fluid) cognition was assessed from a battery of 12 psychometric and computer-based tests. From voxelwise QSM analyses, we found that QSM susceptibility values were negatively associated with fluid cognition in the right inferior temporal gyrus, bilateral putamen, posterior cingulate gyrus, motor, and premotor cortices. Mediation analysis indicated that susceptibility in the right inferior temporal gyrus was a significant mediator of the relation between age and fluid cognition, and similar effects were evident for the left inferior temporal gyrus at a lower statistical threshold. Additionally, age and right inferior temporal gyrus susceptibility interacted to predict fluid cognition, such that brain iron was negatively associated with a cognitive decline for adults over 45 years of age. These findings suggest that iron may have a mediating role in cognitive decline and may be an early biomarker of neurodegenerative disease.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Putamen / Envelhecimento / Córtex Cerebral / Disfunção Cognitiva / Inteligência / Ferro Tipo de estudo: Prognostic_studies Limite: Adolescent / Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Hum Brain Mapp Assunto da revista: CEREBRO Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Putamen / Envelhecimento / Córtex Cerebral / Disfunção Cognitiva / Inteligência / Ferro Tipo de estudo: Prognostic_studies Limite: Adolescent / Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Hum Brain Mapp Assunto da revista: CEREBRO Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos