Your browser doesn't support javascript.
loading
NRSF-GNAO1 Pathway Contributes to the Regulation of Cardiac Ca2+ Homeostasis.
Inazumi, Hideaki; Kuwahara, Koichiro; Nakagawa, Yasuaki; Kuwabara, Yoshihiro; Numaga-Tomita, Takuro; Kashihara, Toshihide; Nakada, Tsutomu; Kurebayashi, Nagomi; Oya, Miku; Nonaka, Miki; Sugihara, Masami; Kinoshita, Hideyuki; Moriuchi, Kenji; Yanagisawa, Hiromu; Nishikimi, Toshio; Motoki, Hirohiko; Yamada, Mitsuhiko; Morimoto, Sachio; Otsu, Kinya; Mortensen, Richard M; Nakao, Kazuwa; Kimura, Takeshi.
Afiliação
  • Inazumi H; Cardiovascular Medicine (H.I., Y.N., H.K., K.M., H.Y., T. Nishikimi, T. Kimura), Graduate School of Medicine, Kyoto University.
  • Kuwahara K; Cardiovascular Medicine (K.K., M.O., H.M.), School of Medicine, Shinshu University, Matsumoto.
  • Nakagawa Y; Cardiovascular Medicine (H.I., Y.N., H.K., K.M., H.Y., T. Nishikimi, T. Kimura), Graduate School of Medicine, Kyoto University.
  • Kuwabara Y; Center for Accessing Early Promising Treatment, Kyoto University Hospital (Y.K.).
  • Numaga-Tomita T; Molecular Pharmacology (T.N.-T., M.Y.), School of Medicine, Shinshu University, Matsumoto.
  • Kashihara T; Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University, Tokyo (T. Kashihara).
  • Nakada T; Research Center for Supports to Advanced Science (T. Nakada), School of Medicine, Shinshu University, Matsumoto.
  • Kurebayashi N; Cellular and Molecular Pharmacology, School of Medicine, Juntendo University, Tokyo (N.K.).
  • Oya M; Cardiovascular Medicine (K.K., M.O., H.M.), School of Medicine, Shinshu University, Matsumoto.
  • Nonaka M; Pain Control Research, The Jikei University School of Medicine (M.N.).
  • Sugihara M; Clinical Laboratory Medicine, School of Medicine, Juntendo University, Tokyo (M.S.).
  • Kinoshita H; Cardiovascular Medicine (H.I., Y.N., H.K., K.M., H.Y., T. Nishikimi, T. Kimura), Graduate School of Medicine, Kyoto University.
  • Moriuchi K; Cardiovascular Medicine (H.I., Y.N., H.K., K.M., H.Y., T. Nishikimi, T. Kimura), Graduate School of Medicine, Kyoto University.
  • Nishikimi T; Cardiovascular Medicine (H.I., Y.N., H.K., K.M., H.Y., T. Nishikimi, T. Kimura), Graduate School of Medicine, Kyoto University.
  • Motoki H; Wakakusa Tatsuma Rehabilitation Hospital, Osaka (T. Nishikimi).
  • Yamada M; Cardiovascular Medicine (K.K., M.O., H.M.), School of Medicine, Shinshu University, Matsumoto.
  • Morimoto S; Molecular Pharmacology (T.N.-T., M.Y.), School of Medicine, Shinshu University, Matsumoto.
  • Otsu K; School of Health Sciences Fukuoka, International University of Health and Welfare, Okawa (S.M.).
  • Mortensen RM; The School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, United Kingdom (K.O.).
  • Nakao K; Molecular and Integrative Physiology, University of Michigan (R.M.M.).
  • Kimura T; Medical Innovation Center (K.N.), Graduate School of Medicine, Kyoto University.
Circ Res ; 130(2): 234-248, 2022 01 21.
Article em En | MEDLINE | ID: mdl-34875852
ABSTRACT

BACKGROUND:

During the development of heart failure, a fetal cardiac gene program is reactivated and accelerates pathological cardiac remodeling. We previously reported that a transcriptional repressor, NRSF (neuron restrictive silencer factor), suppresses the fetal cardiac gene program, thereby maintaining cardiac integrity. The underlying molecular mechanisms remain to be determined, however.

METHODS:

We aim to elucidate molecular mechanisms by which NRSF maintains normal cardiac function. We generated cardiac-specific NRSF knockout mice and analyzed cardiac gene expression profiles in those mice and mice cardiac-specifically expressing a dominant-negative NRSF mutant.

RESULTS:

We found that cardiac expression of Gαo, an inhibitory G protein encoded in humans by GNAO1, is transcriptionally regulated by NRSF and is increased in the ventricles of several mouse models of heart failure. Genetic knockdown of Gnao1 ameliorated the cardiac dysfunction and prolonged survival rates in these mouse heart failure models. Conversely, cardiac-specific overexpression of GNAO1 in mice was sufficient to induce cardiac dysfunction. Mechanistically, we observed that increasing Gαo expression increased surface sarcolemmal L-type Ca2+ channel activity, activated CaMKII (calcium/calmodulin-dependent kinase-II) signaling, and impaired Ca2+ handling in ventricular myocytes, which led to cardiac dysfunction.

CONCLUSIONS:

These findings shed light on a novel function of Gαo in the regulation of cardiac Ca2+ homeostasis and systolic function and suggest Gαo may be an effective therapeutic target for the treatment of heart failure.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Repressoras / Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP / Miócitos Cardíacos / Insuficiência Cardíaca Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Circ Res Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Repressoras / Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP / Miócitos Cardíacos / Insuficiência Cardíaca Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Circ Res Ano de publicação: 2022 Tipo de documento: Article