Your browser doesn't support javascript.
loading
Local dendritic balance enables learning of efficient representations in networks of spiking neurons.
Mikulasch, Fabian A; Rudelt, Lucas; Priesemann, Viola.
Afiliação
  • Mikulasch FA; Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany.
  • Rudelt L; Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany.
  • Priesemann V; Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany; viola.priesemann@ds.mpg.de.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article em En | MEDLINE | ID: mdl-34876505
How can neural networks learn to efficiently represent complex and high-dimensional inputs via local plasticity mechanisms? Classical models of representation learning assume that feedforward weights are learned via pairwise Hebbian-like plasticity. Here, we show that pairwise Hebbian-like plasticity works only under unrealistic requirements on neural dynamics and input statistics. To overcome these limitations, we derive from first principles a learning scheme based on voltage-dependent synaptic plasticity rules. Here, recurrent connections learn to locally balance feedforward input in individual dendritic compartments and thereby can modulate synaptic plasticity to learn efficient representations. We demonstrate in simulations that this learning scheme works robustly even for complex high-dimensional inputs and with inhibitory transmission delays, where Hebbian-like plasticity fails. Our results draw a direct connection between dendritic excitatory-inhibitory balance and voltage-dependent synaptic plasticity as observed in vivo and suggest that both are crucial for representation learning.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Simulação por Computador / Aprendizagem / Modelos Biológicos / Rede Nervosa / Plasticidade Neuronal / Neurônios Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Simulação por Computador / Aprendizagem / Modelos Biológicos / Rede Nervosa / Plasticidade Neuronal / Neurônios Limite: Animals Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha