Noradrenergic terminal short-term potentiation enables modality-selective integration of sensory input and vigilance state.
Sci Adv
; 7(51): eabk1378, 2021 Dec 17.
Article
em En
| MEDLINE
| ID: mdl-34919424
Recent years have seen compelling demonstrations of the importance of behavioral state on sensory processing and attention. Arousal plays a dominant role in controlling brain-wide neural activity patterns, particularly through modulation by norepinephrine. Noradrenergic brainstem nuclei, including locus coeruleus, can be activated by stimuli of multiple sensory modalities and broadcast modulatory signals via axonal projections throughout the brain. This organization might suggest proportional brain-wide norepinephrine release during states of heightened vigilance. Here, however, we have found that low-intensity, nonarousing visual stimuli enhanced vigilance-dependent noradrenergic signaling locally in visual cortex, revealed using dual-site fiber photometry to monitor noradrenergic Ca2+ responses of astroglia simultaneously in cerebellum and visual cortex and two-photon microscopy to monitor noradrenergic axonal terminal Ca2+ dynamics. Nitric oxide, following N-methyl-d-aspartate receptor activation in neuronal nitric oxide synthase-positive interneurons, mediated transient acceleration of norepinephrine-dependent astroglia Ca2+ activation. These findings reveal a candidate cortical microcircuit for sensory modality-selective modulation of attention.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Revista:
Sci Adv
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Estados Unidos