Your browser doesn't support javascript.
loading
Atomic Compass: Detecting 3D Magnetic Field Alignment with Vector Vortex Light.
Castellucci, Francesco; Clark, Thomas W; Selyem, Adam; Wang, Jinwen; Franke-Arnold, Sonja.
Afiliação
  • Castellucci F; School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
  • Clark TW; Wigner Research Centre for Physics, Budapest H-1525, Hungary.
  • Selyem A; Fraunhofer Centre for Applied Photonics, Glasgow G1 1RD, United Kingdom.
  • Wang J; School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
  • Franke-Arnold S; Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.
Phys Rev Lett ; 127(23): 233202, 2021 Dec 03.
Article em En | MEDLINE | ID: mdl-34936773
ABSTRACT
We describe and demonstrate how 3D magnetic field alignment can be inferred from single absorption images of an atomic cloud. While optically pumped magnetometers conventionally rely on temporal measurement of the Larmor precession of atomic dipoles, here a cold atomic vapor provides a spatial interface between vector light and external magnetic fields. Using a vector vortex beam, we inscribe structured atomic spin polarization in a cloud of cold rubidium atoms and record images of the resulting absorption patterns. The polar angle of an external magnetic field can then be deduced with spatial Fourier analysis. This effect presents an alternative concept for detecting magnetic vector fields and demonstrates, more generally, how introducing spatial phases between atomic energy levels can translate transient effects to the spatial domain.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Reino Unido