Your browser doesn't support javascript.
loading
Degradation of the E. coli antitoxin MqsA by the proteolytic complex ClpXP is regulated by zinc occupancy and oxidation.
Vos, Margaret R; Piraino, Benjamin; LaBreck, Christopher J; Rahmani, Negar; Trebino, Catherine E; Schoenle, Marta; Peti, Wolfgang; Camberg, Jodi L; Page, Rebecca.
Afiliação
  • Vos MR; Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA; Graduate Program in Molecular Biology and Biochemistry, University of Connecticut Health Center, Farmington, Connecticut, USA.
  • Piraino B; Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA.
  • LaBreck CJ; Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA.
  • Rahmani N; Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA.
  • Trebino CE; Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA.
  • Schoenle M; Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA.
  • Peti W; Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.
  • Camberg JL; Department of Cell & Molecular Biology, The University of Rhode Island, Kingston, Rhode Island, USA. Electronic address: cambergj@uri.edu.
  • Page R; Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA. Electronic address: rpage@uchc.edu.
J Biol Chem ; 298(2): 101557, 2022 02.
Article em En | MEDLINE | ID: mdl-34974059
ABSTRACT
It is well established that the antitoxins of toxin-antitoxin (TA) systems are selectively degraded by bacterial proteases in response to stress. However, how distinct stressors result in the selective degradation of specific antitoxins remain unanswered. MqsRA is a TA system activated by various stresses, including oxidation. Here, we reconstituted the Escherichia coli ClpXP proteolytic machinery in vitro to monitor degradation of MqsRA TA components. We show that the MqsA antitoxin is a ClpXP proteolysis substrate, and that its degradation is regulated by both zinc occupancy in MqsA and MqsR toxin binding. Using NMR chemical shift perturbation mapping, we show that MqsA is targeted directly to ClpXP via the ClpX substrate targeting N-domain, and ClpX mutations that disrupt N-domain binding inhibit ClpXP-mediated degradation in vitro. Finally, we discovered that MqsA contains a cryptic N-domain recognition sequence that is accessible only in the absence of zinc and MqsR toxin, both of which stabilize the MqsA fold. This recognition sequence is transplantable and sufficient to target a fusion protein for degradation in vitro and in vivo. Based on these results, we propose a model in which stress selectively targets nascent and zinc-free MqsA, resulting in exposure of the ClpX recognition motif for ClpXP-mediated degradation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Zinco / Antitoxinas / Proteínas de Escherichia coli / Endopeptidase Clp / Proteínas de Ligação a DNA / Escherichia coli Idioma: En Revista: J Biol Chem Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Zinco / Antitoxinas / Proteínas de Escherichia coli / Endopeptidase Clp / Proteínas de Ligação a DNA / Escherichia coli Idioma: En Revista: J Biol Chem Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos