Your browser doesn't support javascript.
loading
Electrolyte Additives for Improving the High-Temperature Storage Performance of Li-Ion Battery NCM523∥Graphite with Overcharge Protection.
Gu, Qin; Wang, Ming; Liu, Yang; Deng, Yunlong; Wang, Liping; Gao, Jian.
Afiliação
  • Gu Q; New Energy Materials Laboratory, Sichuan Changhong Electric Co., Ltd., Chengdu 610041, China.
  • Wang M; New Energy Materials Laboratory, Sichuan Changhong Electric Co., Ltd., Chengdu 610041, China.
  • Liu Y; New Energy Materials Laboratory, Sichuan Changhong Electric Co., Ltd., Chengdu 610041, China.
  • Deng Y; New Energy Materials Laboratory, Sichuan Changhong Electric Co., Ltd., Chengdu 610041, China.
  • Wang L; School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Gao J; New Energy Materials Laboratory, Sichuan Changhong Electric Co., Ltd., Chengdu 610041, China.
ACS Appl Mater Interfaces ; 14(3): 4759-4766, 2022 Jan 26.
Article em En | MEDLINE | ID: mdl-35015503
ABSTRACT
The overcharge safety performance of lithium-ion batteries has been the major bottleneck in the widespread deployment of this promising technology. Pushing the limitations further may jeopardize cell safety when it is performed at high-temperature storage. On the basis of the lacking systematic research on overcharge protection electrolyte additives with high-temperature storage capacity, we explore the promotion effect of overcharge additives on electrolyte decomposition at 60 °C. Specifically, the addition of tris(trimethylsily) phosphite (TMSP) and lithium difluoro(oxalato)borate (LiDFOB) in the electrolyte can not only form the robust cathode electrolyte interface/solid electrolyte interphase (CEI/SEI) but also improve the thermal stability of the electrolyte. Therefore, we promote the electrolyte system to realize the 18,650 LIB storage at 60 °C for 50 days by optimizing the formula in the electrolyte containing biphenyl (BP) and cyclohexylbenzene (CHB) overcharge protection additives, and the capacity retention rate can reach more than 90% with overcharge safety. Further, the optimized electrolyte system has also been implemented to commercial 18,650 LIBs and demonstrates the widening of the route to the widespread application of the electrolyte under extreme conditions.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China