Hydride-ion-conducting K2NiF4-type Ba-Li oxyhydride solid electrolyte.
Nat Mater
; 21(3): 325-330, 2022 03.
Article
em En
| MEDLINE
| ID: mdl-35027719
Hydrogen transport in solids, applied in electrochemical devices such as fuel cells and electrolysis cells, is key to sustainable energy societies. Although using proton (H+) conductors is an attractive choice, practical conductivity at intermediate temperatures (200-400 °C), which would be ideal for most energy and chemical conversion applications, remains a challenge. Alternatively, hydride ions (H-), that is, monovalent anions with high polarizability, can be considered a promising charge carrier that facilitates fast ionic conduction in solids. Here, we report a K2NiF4-type Ba-Li oxyhydride with an appreciable amount of hydrogen vacancies that presents long-range order at room temperature. Increasing the temperature results in the disappearance of the vacancy ordering, triggering a high and essentially temperature-independent H- conductivity of more than 0.01 S cm-1 above 315 °C. Such a remarkable H- conducting nature at intermediate temperatures is anticipated to be important for energy and chemical conversion devices.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Prótons
/
Eletrólitos
Idioma:
En
Revista:
Nat Mater
Assunto da revista:
CIENCIA
/
QUIMICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Japão