Your browser doesn't support javascript.
loading
Low membrane fluidity triggers lipid phase separation and protein segregation in living bacteria.
Gohrbandt, Marvin; Lipski, André; Grimshaw, James W; Buttress, Jessica A; Baig, Zunera; Herkenhoff, Brigitte; Walter, Stefan; Kurre, Rainer; Deckers-Hebestreit, Gabriele; Strahl, Henrik.
Afiliação
  • Gohrbandt M; Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany.
  • Lipski A; Lebensmittelmikrobiologie und -hygiene, Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
  • Grimshaw JW; Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
  • Buttress JA; Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
  • Baig Z; Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
  • Herkenhoff B; Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany.
  • Walter S; Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany.
  • Kurre R; Center of Cellular Nanoanalytics, Integrated Bioimaging Facility, Universität Osnabrück, Osnabrück, Germany.
  • Deckers-Hebestreit G; Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany.
  • Strahl H; Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
EMBO J ; 41(5): e109800, 2022 03 01.
Article em En | MEDLINE | ID: mdl-35037270
ABSTRACT
All living organisms adapt their membrane lipid composition in response to changes in their environment or diet. These conserved membrane-adaptive processes have been studied extensively. However, key concepts of membrane biology linked to regulation of lipid composition including homeoviscous adaptation maintaining stable levels of membrane fluidity, and gel-fluid phase separation resulting in domain formation, heavily rely upon in vitro studies with model membranes or lipid extracts. Using the bacterial model organisms Escherichia coli and Bacillus subtilis, we now show that inadequate in vivo membrane fluidity interferes with essential complex cellular processes including cytokinesis, envelope expansion, chromosome replication/segregation and maintenance of membrane potential. Furthermore, we demonstrate that very low membrane fluidity is indeed capable of triggering large-scale lipid phase separation and protein segregation in intact, protein-crowded membranes of living cells; a process that coincides with the minimal level of fluidity capable of supporting growth. Importantly, the in vivo lipid phase separation is not associated with a breakdown of the membrane diffusion barrier function, thus explaining why the phase separation process induced by low fluidity is biologically reversible.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bacillus subtilis / Proteínas / Escherichia coli / Fluidez de Membrana / Lipídeos de Membrana Idioma: En Revista: EMBO J Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bacillus subtilis / Proteínas / Escherichia coli / Fluidez de Membrana / Lipídeos de Membrana Idioma: En Revista: EMBO J Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Alemanha