Your browser doesn't support javascript.
loading
Highly Luminescent and Stable Organic-Inorganic Hybrid Films for Transparent Luminescent Solar Concentrators.
Wang, Yuan; Liu, Yeqi; Xie, Guangmin; Chen, Jinglei; Li, Peng; Zhang, Yuhai; Li, Huanrong.
Afiliação
  • Wang Y; Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, PR China.
  • Liu Y; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, Shandong 250022, China.
  • Xie G; Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, PR China.
  • Chen J; Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, PR China.
  • Li P; Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, PR China.
  • Zhang Y; Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, Shandong 250022, China.
  • Li H; Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, PR China.
ACS Appl Mater Interfaces ; 14(4): 5951-5958, 2022 Feb 02.
Article em En | MEDLINE | ID: mdl-35067042
ABSTRACT
Here, a highly luminescent, stable, and visible-transparent organic-inorganic hybrid film was in situ synthesized in a siloxane-polyether (di-ureasil) sol-gel process by dissolving a 4-hydroxy-2-methyl-1,5-naphthyridine-3-carbonitrile (2mCND) ligand and a europium(III) ion. Doping a europium(III) complex into di-ureasil achieves an boost in photoluminescence quantum efficiency (PLQY) from 23.25 to 68.9%. In particular, the excellent photostability of the hybrid film was demonstrated after a 15 h aging experiment in strong UV-LED irradiation (∼468 mW/cm2). Compared to the polymethyl methacrylate (PMMA) matrix, di-ureasil containing a europium(III) complex shows an improved UV resistance, making it a promising candidate for various photonic applications. By integrating the hybrid film onto an acrylic substrate, a transparent luminescent solar concentrator (LSC) was fabricated, which reveals an optical conversion efficiency of ∼0.51% with a G factor of 3.1 at an optical transmission level of ∼90%. Such an LSC could be of particular interest in future transparent photovoltaic windows.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2022 Tipo de documento: Article