Your browser doesn't support javascript.
loading
Challenges for modelling interventions for future pandemics.
Kretzschmar, Mirjam E; Ashby, Ben; Fearon, Elizabeth; Overton, Christopher E; Panovska-Griffiths, Jasmina; Pellis, Lorenzo; Quaife, Matthew; Rozhnova, Ganna; Scarabel, Francesca; Stage, Helena B; Swallow, Ben; Thompson, Robin N; Tildesley, Michael J; Villela, Daniel.
Afiliação
  • Kretzschmar ME; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. Electronic address: m.e.e.kretzschmar@umcutrecht.nl.
  • Ashby B; Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK.
  • Fearon E; Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK; Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, UK.
  • Overton CE; Department of Mathematics, University of Manchester, UK; Joint UNIversities Pandemic and Epidemiological Research, UK; Clinical Data Science Unit, Manchester University NHS Foundation Trust, UK.
  • Panovska-Griffiths J; The Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; The Queen's College, University of Oxford, Oxford, UK.
  • Pellis L; Department of Mathematics, University of Manchester, UK; Joint UNIversities Pandemic and Epidemiological Research, UK; The Alan Turing Institute, London, UK.
  • Quaife M; TB Modelling Group, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, UK.
  • Rozhnova G; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
  • Scarabel F; Department of Mathematics, University of Manchester, UK; Joint UNIversities Pandemic and Epidemiological Research, UK; CDLab - Computational Dynamics Laboratory, Department of Mathematics, Computer Science and Physics, University of Udine, Italy.
  • Stage HB; Department of Mathematics, University of Manchester, UK; Joint UNIversities Pandemic and Epidemiological Research, UK; University of Potsdam, Germany; Humboldt University of Berlin, Germany.
  • Swallow B; School of Mathematics and Statistics, University of Glasgow, Glasgow, UK; Scottish Covid-19 Response Consortium, UK.
  • Thompson RN; Joint UNIversities Pandemic and Epidemiological Research, UK; Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK; Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry CV4 7AL, UK.
  • Tildesley MJ; Joint UNIversities Pandemic and Epidemiological Research, UK; Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK; Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry CV4 7AL, UK.
  • Villela D; Program of Scientific Computing, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
Epidemics ; 38: 100546, 2022 03.
Article em En | MEDLINE | ID: mdl-35183834
Mathematical modelling and statistical inference provide a framework to evaluate different non-pharmaceutical and pharmaceutical interventions for the control of epidemics that has been widely used during the COVID-19 pandemic. In this paper, lessons learned from this and previous epidemics are used to highlight the challenges for future pandemic control. We consider the availability and use of data, as well as the need for correct parameterisation and calibration for different model frameworks. We discuss challenges that arise in describing and distinguishing between different interventions, within different modelling structures, and allowing both within and between host dynamics. We also highlight challenges in modelling the health economic and political aspects of interventions. Given the diversity of these challenges, a broad variety of interdisciplinary expertise is needed to address them, combining mathematical knowledge with biological and social insights, and including health economics and communication skills. Addressing these challenges for the future requires strong cross-disciplinary collaboration together with close communication between scientists and policy makers.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pandemias / COVID-19 Limite: Humans Idioma: En Revista: Epidemics Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pandemias / COVID-19 Limite: Humans Idioma: En Revista: Epidemics Ano de publicação: 2022 Tipo de documento: Article