Your browser doesn't support javascript.
loading
Two-Component Redox Organocatalyst for Peptide Bond Formation.
Panigrahi, Nihar R; Arora, Paramjit S.
Afiliação
  • Handoko; Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States.
  • Panigrahi NR; Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States.
  • Arora PS; Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States.
J Am Chem Soc ; 144(8): 3637-3643, 2022 03 02.
Article em En | MEDLINE | ID: mdl-35188383
ABSTRACT
Peptides are fundamental therapeutic modalities whose sequence-specific synthesis can be automated. Yet, modern peptide synthesis remains atom uneconomical and requires an excess of coupling agents and protected amino acids for efficient amide bond formation. We recently described the rational design of an organocatalyst that can operate on Fmoc amino acids─the standard monomers in automated peptide synthesis (J. Am. Chem. Soc. 2019, 141, 15977). The catalytic cycle centered on the conversion of the carboxylic acid to selenoester, which was activated by a hydrogen bonding scaffold for amine coupling. The selenoester was generated in situ from a diselenide catalyst and stoichiometric amounts of phosphine. Although the prior system catalyzed oligopeptide synthesis on solid phase, it had two significant requirements that limited its utility as an alternative to coupling agents─it depended on stoichiometric amounts of phosphine and required molecular sieves as dehydrating agent. Here, we address these limitations with an optimized method that requires only catalytic amounts of phosphine and no dehydrating agent. The new method utilizes a two-component organoreductant/organooxidant-recycling strategy to catalyze amide bond formation.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peptídeos / Aminoácidos Idioma: En Revista: J Am Chem Soc Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peptídeos / Aminoácidos Idioma: En Revista: J Am Chem Soc Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos