Your browser doesn't support javascript.
loading
Improving Depth Estimation by Embedding Semantic Segmentation: A Hybrid CNN Model.
Valdez-Rodríguez, José E; Calvo, Hiram; Felipe-Riverón, Edgardo; Moreno-Armendáriz, Marco A.
Afiliação
  • Valdez-Rodríguez JE; Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n, Ciudad de México 07738, Mexico.
  • Calvo H; Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n, Ciudad de México 07738, Mexico.
  • Felipe-Riverón E; Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n, Ciudad de México 07738, Mexico.
  • Moreno-Armendáriz MA; Centro de Investigación en Computación, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n, Ciudad de México 07738, Mexico.
Sensors (Basel) ; 22(4)2022 Feb 21.
Article em En | MEDLINE | ID: mdl-35214571
Single image depth estimation works fail to separate foreground elements because they can easily be confounded with the background. To alleviate this problem, we propose the use of a semantic segmentation procedure that adds information to a depth estimator, in this case, a 3D Convolutional Neural Network (CNN)-segmentation is coded as one-hot planes representing categories of objects. We explore 2D and 3D models. Particularly, we propose a hybrid 2D-3D CNN architecture capable of obtaining semantic segmentation and depth estimation at the same time. We tested our procedure on the SYNTHIA-AL dataset and obtained σ3=0.95, which is an improvement of 0.14 points (compared with the state of the art of σ3=0.81) by using manual segmentation, and σ3=0.89 using automatic semantic segmentation, proving that depth estimation is improved when the shape and position of objects in a scene are known.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Semântica / Processamento de Imagem Assistida por Computador Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: México

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Semântica / Processamento de Imagem Assistida por Computador Idioma: En Revista: Sensors (Basel) Ano de publicação: 2022 Tipo de documento: Article País de afiliação: México