Your browser doesn't support javascript.
loading
Controlled Synthesis of Intermetallic Au2 Bi Nanocrystals and Au2 Bi/Bi Hetero-Nanocrystals with Promoted Electrocatalytic CO2 Reduction Properties.
Zhu, Zhejiaji; Yu, Zi-Long; Gao, Wen-Yan; Su, Xin; Chen, Li-Wei; Hao, Yu-Chen; Wu, Si-Qian; Liu, Di; Jing, Xiao-Ting; Huang, Hui-Zi; Yin, An-Xiang.
Afiliação
  • Zhu Z; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Yu ZL; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Gao WY; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Su X; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Chen LW; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Hao YC; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Wu SQ; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Liu D; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Jing XT; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Huang HZ; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Yin AX; Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
ChemSusChem ; 15(10): e202200211, 2022 May 20.
Article em En | MEDLINE | ID: mdl-35266642
ABSTRACT
The electrocatalytic properties of metal nanoparticles (NPs) strongly depend on their compositions and structures. Rational design of alloys and/or heterostructures provides additional approaches to modifying their surface geometric and electronic structures for optimized electrocatalytic performance. Here, a solution synthesis of freestanding intermetallic Au2 Bi NPs, the heterostructures of Au2 Bi/Bi hetero-NPs, and their promoted electrocatalytic CO2 reduction reaction (CO2 RR) performances were reported. It was revealed that the formation and in-situ conversion of heterogeneous seeds (e. g., Au) were of vital importance for the formation of intermetallic Au2 Bi and Au2 Bi/Bi hetero-NPs. It was also found that the Au components would act as the structure promoter moderating the binding strength for key intermediates on Bi surfaces. The alloying of Bi with Au and the formation of heterogeneous Au2 Bi/Bi interfaces would create more surface active sites with modulated electronic structures and stronger adsorption strengths for key intermediates, promoting the CO2 -to-HCOOH conversion with high activity and selectivity. This work presents a novel route for preparing intermetallic nanomaterials with modulated surface geometric/electric structures and promoting their electrocatalytic activities with alloying effects and interfacial effects. Such strategy may find wide application in catalyst design and synthesis for more electrocatalytic reactions.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ChemSusChem Assunto da revista: QUIMICA / TOXICOLOGIA Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ChemSusChem Assunto da revista: QUIMICA / TOXICOLOGIA Ano de publicação: 2022 Tipo de documento: Article