DRUMMER-rapid detection of RNA modifications through comparative nanopore sequencing.
Bioinformatics
; 38(11): 3113-3115, 2022 05 26.
Article
em En
| MEDLINE
| ID: mdl-35426900
MOTIVATION: The chemical modification of ribonucleotides regulates the structure, stability and interactions of RNAs. Profiling of these modifications using short-read (Illumina) sequencing techniques provides high sensitivity but low-to-medium resolution i.e. modifications cannot be assigned to specific transcript isoforms in regions of sequence overlap. An alternative strategy uses current fluctuations in nanopore-based long read direct RNA sequencing (DRS) to infer the location and identity of nucleotides that differ between two experimental conditions. While highly sensitive, these signal-level analyses require high-quality transcriptome annotations and thus are best suited to the study of model organisms. By contrast, the detection of RNA modifications in microbial organisms which typically have no or low-quality annotations requires an alternative strategy. Here, we demonstrate that signal fluctuations directly influence error rates during base-calling and thus provides an alternative approach for identifying modified nucleotides. RESULTS: DRUMMER (Detection of Ribonucleic acid Modifications Manifested in Error Rates) (i) utilizes a range of statistical tests and background noise correction to identify modified nucleotides with high confidence, (ii) operates with similar sensitivity to signal-level analysis approaches and (iii) correlates very well with orthogonal approaches. Using well-characterized DRS datasets supported by independent meRIP-Seq and miCLIP-Seq datasets we demonstrate that DRUMMER operates with high sensitivity and specificity. AVAILABILITY AND IMPLEMENTATION: DRUMMER is written in Python 3 and is available as open source in the GitHub repository: https://github.com/DepledgeLab/DRUMMER. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Sequenciamento por Nanoporos
Tipo de estudo:
Diagnostic_studies
Idioma:
En
Revista:
Bioinformatics
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2022
Tipo de documento:
Article
País de afiliação:
Estados Unidos