Your browser doesn't support javascript.
loading
Relational POI recommendation model combined with geographic information.
Li, Ke; Wei, Haitao; He, Xiaohui; Tian, Zhihui.
Afiliação
  • Li K; The School of the Geo-Science & Technology, Zhengzhou University, Zhengzhou, Henan, China.
  • Wei H; Joint Laboratory of Eco-Meteorology, Zhengzhou University, Chinese Academy of Meteorological Sciences, Zhengzhou, Henan, China.
  • He X; The School of the Geo-Science & Technology, Zhengzhou University, Zhengzhou, Henan, China.
  • Tian Z; Joint Laboratory of Eco-Meteorology, Zhengzhou University, Chinese Academy of Meteorological Sciences, Zhengzhou, Henan, China.
PLoS One ; 17(4): e0266340, 2022.
Article em En | MEDLINE | ID: mdl-35427385
Point of interest (POI) recommendation is a popular personalized location-based service. This paper proposes a Geographic Personal Matrix Factorization (GPMF) model that makes effective use of geographic information from the perspective of the relationship between POIs and users. This model considers the role of geographic information from multiple perspectives based on the locational relationship among users, the distributional relationship between users and POIs, and the proximity and clustering relationship among POIs. The GPMF mines the influence of geographic information on different objects and carries out unique modeling through cosine similarity, non-linear function, and k nearest neighbor (KNN). This study explored the influence of geographic information on POI recommendation through extensive experiments with data from Foursquare. The result shows that GPMF performs better than the commonly used POI recommendation algorithm in terms of both precision and recall. Geographic information through proximity relations effectively improves the recommendation algorithm.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Insuficiência Ovariana Primária Tipo de estudo: Prognostic_studies Limite: Female / Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Insuficiência Ovariana Primária Tipo de estudo: Prognostic_studies Limite: Female / Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China