Your browser doesn't support javascript.
loading
Integration of machine learning with computational structural biology of plants.
Chen, Jiming; Shukla, Diwakar.
Afiliação
  • Chen J; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.
  • Shukla D; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, U.S.A.
Biochem J ; 479(8): 921-928, 2022 04 29.
Article em En | MEDLINE | ID: mdl-35484946
Computational structural biology of proteins has developed rapidly in recent decades with the development of new computational tools and the advancement of computing hardware. However, while these techniques have widely been used to make advancements in human medicine, these methods have seen less utilization in the plant sciences. In the last several years, machine learning methods have gained popularity in computational structural biology. These methods have enabled the development of new tools which are able to address the major challenges that have hampered the wide adoption of the computational structural biology of plants. This perspective examines the remaining challenges in computational structural biology and how the development of machine learning techniques enables more in-depth computational structural biology of plants.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biologia Computacional / Aprendizado de Máquina Limite: Humans Idioma: En Revista: Biochem J Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Biologia Computacional / Aprendizado de Máquina Limite: Humans Idioma: En Revista: Biochem J Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos