First Report of Stem and Leaf Blight Disease on Mesona chinensis Caused by Rhizoctonia solani in China.
Plant Dis
; 2022 Apr 29.
Article
em En
| MEDLINE
| ID: mdl-35488363
Mesona chinensis is an important medicinal and edible plant resource distributed in eight provinces in southern China. In December 2021, an unknown stem and leaf blight disease was found in M. chinensis cultivation areas in Longzhou County, Guangxi, China. Sixty days after transplanting, the incidence of this disease was 10%. Leaf spots mostly appeared from the leaf edge, were irregular, brown to dark brown, causing more than half of the leaf or the whole leaf to die. The infected stem first showed dark brown spots, then constricted slightly, became necrotic and rotted with the expansion of the spots, resulting in the death of the whole plant. Loose cobweb-like mycelia, which resembled Rhizoctonia, could be seen on the diseased tissues in conditions of high humidity. To identify the pathogen, diseased stems and leaves with typical symptoms from Longzhou County were collected and surface-sterilized with 75% ethanol for 30 s. Small fragments (5×5 mm) at the junction of diseased and healthy tissues were disinfected with 1% NaClO for 1min, washed with sterile water three times, transferred to potato dextrose agar (PDA), and incubated at 28°C for 3 days. Mycelial tips were removed, and six isolates (No. R1-R6) were obtained. The colonies were initially gray white and later light brown. Many nearly round to irregular sclerotia appeared after 7 days of culture. The sclerotia turned from light brown to deep brown and were 1 to 5 mm in diameter. The mycelium branched at a 90° angle, with septa near the branches and a constriction of the mycelium at the base of the branch. These morphological characteristics were consistent with Rhizoctonia. For molecular identification, genomic DNA of the six isolates was obtained using an extraction kit (Biocolor, Shanghai, China), and primers ITS4/ITS5 were used to amplify the internal transcribed spacers (ITS) and 5.8S rRNA (White et al. 1990). A 750 bp DNA fragment was obtained and the sequences were deposited in GenBank (OM095383-OM095388). All isolates had ≥ 99% identity with anastomosis group AG1-1B (HG934429 and HQ185364) of R. solani. A phylogenetic tree showed that the isolates and those from anastomosis group AG1-1B clustered into one branch. To satisfy Koch's postulates, the isolates from diseased leaf (No. R1, R2, and R3) and diseased stem (No. R4, R5, and R6) were inoculated on leaves and stems of 45-day-old M. chinensis plants. Five leaves and stems were inoculated with mycelial plugs of each isolate without wounding and another five leaves and stems were inoculated with mycelial plugs of each isolate after pinprick wounding. Control wounded leaves and stems were inoculated with sterile PDA discs. To maintain high humidity, the plants were incubated at 28°C and covered with transparent plastic covers. Diseased spots first appeared 24 h after inoculation. Three days post-inoculation, all inoculated leaves and stems showed symptoms like those observed in the field, whereas controls were asymptomatic. The pathogen was re-isolated from the diseased inoculated tissues using the method described above, and isolated fungi had the morphological characteristics of R. solani. Thus, the pathogen causing stem and leaf blight disease of M. chinensis was determined to be R. solani. The host range of R. solani is wide, and anastomosis group AG1-1B has been reported to infect plants such as rice, bean, fig, cabbage, and lettuce (Sneh et al. 1991). To our knowledge, this is the first report of R. solani causing a stem and leaf blight on M. chinensis, and provides a basis for diagnosis and control of the disease.
Texto completo:
1
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Plant Dis
Ano de publicação:
2022
Tipo de documento:
Article