Your browser doesn't support javascript.
loading
Recycling the CoMo/Al2O3 catalyst for effectively hydro-upgrading shale oil with high sulfur content and viscosity.
Bello, Suleiman Sabo; Wang, Chao; Zhang, Mengjuan; Han, Zhennan; Shi, Lei; Wang, Kangjun; Zhong, Ziyi; Su, Fabing; Xu, Guangwen.
Afiliação
  • Bello SS; Key Laboratory of Chemical and Material Resources, Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology Shenyang 110142 China fbsu@ipe.ac.cn gwxu@syuct.edu.cn +86-10-82544851 +86-10-82544850.
  • Wang C; State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China.
  • Zhang M; School of Chemical Engineering, University of Chinese Academy of Sciences Beijing 100049 People's Republic of China.
  • Han Z; Key Laboratory of Chemical and Material Resources, Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology Shenyang 110142 China fbsu@ipe.ac.cn gwxu@syuct.edu.cn +86-10-82544851 +86-10-82544850.
  • Shi L; Graduate School of Science and Technology, Hirosaki University 3 Bunkyo-cho, Hirosaki Aomori 036-8560 Japan.
  • Wang K; Key Laboratory of Chemical and Material Resources, Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology Shenyang 110142 China fbsu@ipe.ac.cn gwxu@syuct.edu.cn +86-10-82544851 +86-10-82544850.
  • Zhong Z; Graduate School of Science and Technology, Hirosaki University 3 Bunkyo-cho, Hirosaki Aomori 036-8560 Japan.
  • Su F; Key Laboratory of Chemical and Material Resources, Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology Shenyang 110142 China fbsu@ipe.ac.cn gwxu@syuct.edu.cn +86-10-82544851 +86-10-82544850.
  • Xu G; Key Laboratory of Chemical and Material Resources, Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology Shenyang 110142 China fbsu@ipe.ac.cn gwxu@syuct.edu.cn +86-10-82544851 +86-10-82544850.
RSC Adv ; 10(61): 37287-37298, 2020 Oct 07.
Article em En | MEDLINE | ID: mdl-35521249
Hydrotreatment is an effective upgrading technology for removing contaminants and saturating double bonds. Still, few studies have reported the hydro-upgrading of shale oil, with unusually high sulfur (13200 ppm) content, using the CoMo/Al2O3 catalyst. Here we report an extensive study on the upgrading of shale oil by hydrotreatment in a stirred batch autoclave reactor (500 ml) for sulfur removal and viscosity reduction. From a preliminary optimization of the reaction factors, the best-operating conditions were 400 °C, an initial H2-pressure of 5 MPa, and an agitation rate of 800 rpm, a catalyst-to-oil ratio of 0.1, and a reaction time of 1 h. We could achieve a sulfur removal efficiency of 87.1% and 88.2% viscosity reduction under the optimal conditions. After that, the spent CoMo/Al2O3 was repeatedly used for subsequent upgrading tests without any form of pre-treatment. The results showed an increase in the sulfur removal efficiency with an increase in the number of catalyst runs. Ultimately, 99.5-99.9% sulfur removal from the shale oil was achieved by recycling the spent material. Both the fresh and the spent CoMo/Al2O3 were characterized and analyzed to ascertain their transformation levels by XRD, TEM, TG, XPS, TPD and N2 adsorption analysis. The increasing HDS efficiency is attributed to the continuing rise in the sulfidation degree of the catalyst in the sulfur-rich shale oil. The light fraction component in the liquid products (IBP-180 °C) was 30-37 vol% higher than in the fresh shale oil. The product oil can meet the sulfur content requirement of the national standard marine fuel (GB17411-2015/XG1-2018) of China.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: RSC Adv Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: RSC Adv Ano de publicação: 2020 Tipo de documento: Article