Your browser doesn't support javascript.
loading
Spectral Normalized CycleGAN with Application in Semisupervised Semantic Segmentation of Sonar Images.
Zhang, Zhisheng; Tang, Jinsong; Zhong, Heping; Wu, Haoran; Zhang, Peng; Ning, Mingqiang.
Afiliação
  • Zhang Z; Institute of Electronic Engineering, Naval University of Engineering, Wuhan, China.
  • Tang J; Institute of Electronic Engineering, Naval University of Engineering, Wuhan, China.
  • Zhong H; Institute of Electronic Engineering, Naval University of Engineering, Wuhan, China.
  • Wu H; Institute of Electronic Engineering, Naval University of Engineering, Wuhan, China.
  • Zhang P; Institute of Electronic Engineering, Naval University of Engineering, Wuhan, China.
  • Ning M; Institute of Electronic Engineering, Naval University of Engineering, Wuhan, China.
Comput Intell Neurosci ; 2022: 1274260, 2022.
Article em En | MEDLINE | ID: mdl-35528354
The effectiveness of CycleGAN is demonstrated to outperform recent approaches for semisupervised semantic segmentation on public segmentation benchmarks. In contrast to analog images, however, the acoustic images are unbalanced and often exhibit speckle noise. As a consequence, CycleGAN is prone to mode-collapse and cannot retain target details when applied directly to the sonar image dataset. To address this problem, a spectral normalized CycleGAN network is presented, which applies spectral normalization to both generators and discriminators to stabilize the training of GANs. Without using a pretrained model, the experimental results demonstrate that our simple yet effective method helps to achieve reasonably accurate sonar targets segmentation results.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Semântica / Processamento de Imagem Assistida por Computador Idioma: En Revista: Comput Intell Neurosci Assunto da revista: INFORMATICA MEDICA / NEUROLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Semântica / Processamento de Imagem Assistida por Computador Idioma: En Revista: Comput Intell Neurosci Assunto da revista: INFORMATICA MEDICA / NEUROLOGIA Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China